
The Reference Book
for Symfony master

generated on February 20, 2013

The Reference Book (master)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work
only under the same, similar or a compatible license. For any reuse or distribution, you must make
clear to others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

FrameworkBundle Configuration ("framework")..5
AsseticBundle Configuration Reference ...13
Doctrine Configuration Reference ...15
Security Configuration Reference...21
SwiftmailerBundle Configuration ("swiftmailer")..27
TwigBundle Configuration Reference ..31
Monolog Configuration Reference...33
WebProfilerBundle Configuration ...35
Form Types Reference...36
birthday Field Type...38
checkbox Field Type ...42
choice Field Type..45
collection Field Type...51
country Field Type..57
csrf Field Type ..61
date Field Type ...63
datetime Field Type ..68
email Field Type ...72
entity Field Type ...74
file Field Type ...79
The Abstract "field" Type ..82
form Field Type ..83
hidden Field Type ...86
integer Field Type ...88
language Field Type ..91
locale Field Type...95
money Field Type ...99
number Field Type.. 103
password Field Type ... 107
percent Field Type .. 110
radio Field Type.. 113
repeated Field Type... 115
search Field Type .. 119
text Field Type.. 121
textarea Field Type ... 123
time Field Type... 125

PDF brought to you by
generated on February 20, 2013

Contents at a Glance | iii

http://sensiolabs.com

timezone Field Type.. 129
url Field Type ... 133
Twig Template Form Function Reference .. 136
Symfony2 Twig Extensions ... 139
Validation Constraints Reference... 143
NotBlank.. 145
Blank.. 147
NotNull.. 149
Null.. 151
True ... 153
False... 155
Type... 157
Email.. 159
MinLength.. 161
MaxLength ... 163
Length .. 165
Url.. 167
Regex ... 169
Ip ... 171
Max.. 173
Min .. 175
Range ... 177
Date ... 179
DateTime ... 180
Time... 181
Choice.. 182
Collection... 186
Count... 189
UniqueEntity .. 191
Language .. 194
Locale... 195
Country.. 197
File ... 198
Image ... 201
CardScheme ... 205
Luhn .. 207
Callback ... 209
All .. 212
UserPassword ... 214
Valid .. 216
The Dependency Injection Tags... 218
Requirements for running Symfony2.. 229

iv | Contents at a Glance Contents at a Glance | 4

Chapter 1

FrameworkBundle Configuration
("framework")

This reference document is a work in progress. It should be accurate, but all options are not yet fully
covered.

The FrameworkBundle contains most of the "base" framework functionality and can be configured
under the framework key in your application configuration. This includes settings related to sessions,
translation, forms, validation, routing and more.

Configuration
• secret

• ide

• test

• trust_proxy_headers
• form

• enabled

• csrf_protection

• enabled
• field_name

• session

• cookie_lifetime
• cookie_path
• cookie_domain
• cookie_secure
• cookie_httponly
• gc_divisor

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 5

http://sensiolabs.com

Listing 1-1

Listing 1-2

• gc_probability
• gc_maxlifetime
• save_path

• templating

• assets_base_urls
• assets_version
• assets_version_format

secret

type: string required

This is a string that should be unique to your application. In practice, it's used for generating the CSRF
tokens, but it could be used in any other context where having a unique string is useful. It becomes the
service container parameter named kernel.secret.

ide

type: string default: null

If you're using an IDE like TextMate or Mac Vim, then Symfony can turn all of the file paths in an
exception message into a link, which will open that file in your IDE.

If you use TextMate or Mac Vim, you can simply use one of the following built-in values:

• textmate
• macvim

You can also specify a custom file link string. If you do this, all percentage signs (%) must be doubled to
escape that character. For example, the full TextMate string would look like this:

1
2

framework:
ide: "txmt://open?url=file://%%f&line=%%l"

Of course, since every developer uses a different IDE, it's better to set this on a system level. This can be
done by setting the xdebug.file_link_format PHP.ini value to the file link string. If this configuration
value is set, then the ide option does not need to be specified.

test

type: Boolean

If this configuration parameter is present (and not false), then the services related to testing your
application (e.g. test.client) are loaded. This setting should be present in your test environment
(usually via app/config/config_test.yml). For more information, see Testing.

trusted_proxies

type: array

Configures the IP addresses that should be trusted as proxies. For more details, see Trusting Proxies.

1
2

framework:
trusted_proxies: [192.0.0.1]

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 6

http://sensiolabs.com

trust_proxy_headers

The trust_proxy_headers option is deprecated and will be removed in Symfony 2.3. See
trusted_proxies and Trusting Proxies for details on how to properly trust proxy data.

type: Boolean

Configures if HTTP headers (like HTTP_X_FORWARDED_FOR, X_FORWARDED_PROTO, and
X_FORWARDED_HOST) are trusted as an indication for an SSL connection. By default, it is set to false and
only SSL_HTTPS connections are indicated as secure.

You should enable this setting if your application is behind a reverse proxy.

form

csrf_protection

session

cookie_lifetime

New in version 2.1: This option was formerly know as lifetime

type: integer default: 0

This determines the lifetime of the session - in seconds. By default it will use 0, which means the cookie
is valid for the length of the browser session.

cookie_path

New in version 2.1: This option was formerly know as path

type: string default: /

This determines the path to set in the session cookie. By default it will use /.

cookie_domain

New in version 2.1: This option was formerly know as domain

type: string default: ''

This determines the domain to set in the session cookie. By default it's blank, meaning the host name of
the server which generated the cookie according to the cookie specification.

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 7

http://sensiolabs.com

cookie_secure

New in version 2.1: This option was formerly know as secure

type: Boolean default: false

This determines whether cookies should only be sent over secure connections.

cookie_httponly

New in version 2.1: This option was formerly know as httponly

type: Boolean default: false

This determines whether cookies should only accesible through the HTTP protocol. This means that the
cookie won't be accesible by scripting languages, such as JavaScript. This setting can effectively help to
reduce identity theft through XSS attacks.

gc_probability

New in version 2.1: The gc_probability option is new in version 2.1

type: integer default: 1

This defines the probability that the garbage collector (GC) process is started on every session
initialization. The probability is calculated by using gc_probability / gc_divisor, e.g. 1/100 means
there is a 1% chance that the GC process will start on each request.

gc_divisor

New in version 2.1: The gc_divisor option is new in version 2.1

type: integer default: 100

See gc_probability.

gc_maxlifetime

New in version 2.1: The gc_maxlifetime option is new in version 2.1

type: integer default: 14400

This determines the number of seconds after which data will be seen as "garbage" and potentially cleaned
up. Garbage collection may occur during session start and depends on gc_divisor and gc_probability.

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 8

http://sensiolabs.com

Listing 1-3

Listing 1-4

save_path

type: string default: %kernel.cache.dir%/sessions

This determines the argument to be passed to the save handler. If you choose the default file handler, this
is the path where the files are created.

templating

assets_base_urls

default: { http: [], ssl: [] }

This option allows you to define base URL's to be used for assets referenced from http and ssl (https)
pages. A string value may be provided in lieu of a single-element array. If multiple base URL's are
provided, Symfony2 will select one from the collection each time it generates an asset's path.

For your convenience, assets_base_urls can be set directly with a string or array of strings, which
will be automatically organized into collections of base URL's for http and https requests. If a URL
starts with https:// or is protocol-relative1 (i.e. starts with //) it will be added to both collections. URL's
starting with http:// will only be added to the http collection.

New in version 2.1: Unlike most configuration blocks, successive values for assets_base_urls
will overwrite each other instead of being merged. This behavior was chosen because developers
will typically define base URL's for each environment. Given that most projects tend to inherit
configurations (e.g. config_test.yml imports config_dev.yml) and/or share a common base
configuration (i.e. config.yml), merging could yield a set of base URL's for multiple environments.

assets_version

type: string

This option is used to bust the cache on assets by globally adding a query parameter to all rendered asset
paths (e.g. /images/logo.png?v2). This applies only to assets rendered via the Twig asset function (or
PHP equivalent) as well as assets rendered with Assetic.

For example, suppose you have the following:

1

By default, this will render a path to your image such as /images/logo.png. Now, activate the
assets_version option:

1
2
3
4

app/config/config.yml
framework:

...
templating: { engines: ['twig'], assets_version: v2 }

Now, the same asset will be rendered as /images/logo.png?v2 If you use this feature, you must
manually increment the assets_version value before each deployment so that the query parameters
change.

You can also control how the query string works via the assets_version_format option.

1. http://tools.ietf.org/html/rfc3986#section-4.2

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 9

http://sensiolabs.com

Listing 1-5

assets_version_format

type: string default: %%s?%%s

This specifies a sprintf2 pattern that will be used with the assets_version option to construct an
asset's path. By default, the pattern adds the asset's version as a query string. For example, if
assets_version_format is set to %%s?version=%%s and assets_version is set to 5, the asset's path
would be /images/logo.png?version=5.

All percentage signs (%) in the format string must be doubled to escape the character. Without
escaping, values might inadvertently be interpreted as Service Parameters.

Some CDN's do not support cache-busting via query strings, so injecting the version into the actual
file path is necessary. Thankfully, assets_version_format is not limited to producing versioned
query strings.

The pattern receives the asset's original path and version as its first and second parameters,
respectively. Since the asset's path is one parameter, you cannot modify it in-place (e.g. /images/
logo-v5.png); however, you can prefix the asset's path using a pattern of version-%%2$s/%%1$s,
which would result in the path version-5/images/logo.png.

URL rewrite rules could then be used to disregard the version prefix before serving the asset.
Alternatively, you could copy assets to the appropriate version path as part of your deployment
process and forgo any URL rewriting. The latter option is useful if you would like older asset
versions to remain accessible at their original URL.

Full Default Configuration

framework:
charset: ~
secret: ~
trust_proxy_headers: false
trusted_proxies: []
ide: ~
test: ~
default_locale: en

form configuration
form:

enabled: false
csrf_protection:

enabled: false
field_name: _token

esi configuration
esi:

enabled: false

fragments configuration
fragments:

enabled: false
path: /_fragment

profiler configuration

2. http://php.net/manual/en/function.sprintf.php

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 10

http://sensiolabs.com

profiler:
enabled: false
only_exceptions: false
only_master_requests: false
dsn: file:%kernel.cache_dir%/profiler
username:
password:
lifetime: 86400
matcher:

ip: ~

use the urldecoded format
path: ~ # Example: ^/path to resource/
service: ~

router configuration
router:

resource: ~ # Required
type: ~
http_port: 80
https_port: 443

set to true to throw an exception when a parameter does not match the requirements
set to false to disable exceptions when a parameter does not match the requirements

(and return null instead)
set to null to disable parameter checks against requirements
'true' is the preferred configuration in development mode, while 'false' or 'null'

might be preferred in production
strict_requirements: true

session configuration
session:

DEPRECATED! Session starts on demand
auto_start: false
storage_id: session.storage.native
handler_id: session.handler.native_file
name: ~
cookie_lifetime: ~
cookie_path: ~
cookie_domain: ~
cookie_secure: ~
cookie_httponly: ~
gc_divisor: ~
gc_probability: ~
gc_maxlifetime: ~
save_path: %kernel.cache_dir%/sessions

DEPRECATED! Please use: cookie_lifetime
lifetime: ~

DEPRECATED! Please use: cookie_path
path: ~

DEPRECATED! Please use: cookie_domain
domain: ~

DEPRECATED! Please use: cookie_secure
secure: ~

DEPRECATED! Please use: cookie_httponly
httponly: ~

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 11

http://sensiolabs.com

templating configuration
templating:

assets_version: ~
assets_version_format: %%s?%%s
hinclude_default_template: ~
form:

resources:

Default:
- FrameworkBundle:Form

assets_base_urls:
http: []
ssl: []

cache: ~
engines: # Required

Example:
- twig

loaders: []
packages:

Prototype
name:

version: ~
version_format: %%s?%%s
base_urls:

http: []
ssl: []

translator configuration
translator:

enabled: false
fallback: en

validation configuration
validation:

enabled: false
cache: ~
enable_annotations: false
translation_domain: validators

annotation configuration
annotations:

cache: file
file_cache_dir: %kernel.cache_dir%/annotations
debug: %kernel.debug%

New in version 2.1: The `framework.session.auto_start setting has been removed in
Symfony2.1, it will start on demand now.

PDF brought to you by
generated on February 20, 2013

Chapter 1: FrameworkBundle Configuration ("framework") | 12

http://sensiolabs.com

Listing 2-1

Chapter 2

AsseticBundle Configuration Reference

Full Default Configuration

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

assetic:
debug: "%kernel.debug%"
use_controller:

enabled: "%kernel.debug%"
profiler: false

read_from: "%kernel.root_dir%/../web"
write_to: "%assetic.read_from%"
java: /usr/bin/java
node: /usr/bin/node
ruby: /usr/bin/ruby
sass: /usr/bin/sass
An key-value pair of any number of named elements
variables:

some_name: []
bundles:

Defaults (all currently registered bundles):
- FrameworkBundle
- SecurityBundle
- TwigBundle
- MonologBundle
- SwiftmailerBundle
- DoctrineBundle
- AsseticBundle
- ...

assets:
An array of named assets (e.g. some_asset, some_other_asset)
some_asset:

inputs: []
filters: []
options:

PDF brought to you by
generated on February 20, 2013

Chapter 2: AsseticBundle Configuration Reference | 13

http://sensiolabs.com

32
33
34
35
36
37
38
39
40
41

A key-value array of options and values
some_option_name: []

filters:

An array of named filters (e.g. some_filter, some_other_filter)
some_filter: []

twig:
functions:

An array of named functions (e.g. some_function, some_other_function)
some_function: []

PDF brought to you by
generated on February 20, 2013

Chapter 2: AsseticBundle Configuration Reference | 14

http://sensiolabs.com

Listing 3-1

Chapter 3

Doctrine Configuration Reference

doctrine:
dbal:

default_connection: default
types:

A collection of custom types
Example
some_custom_type:

class: Acme\HelloBundle\MyCustomType
commented: true

connections:
default:

dbname: database

A collection of different named connections (e.g. default, conn2, etc)
default:

dbname: ~
host: localhost
port: ~
user: root
password: ~
charset: ~
path: ~
memory: ~

The unix socket to use for MySQL
unix_socket: ~

True to use as persistent connection for the ibm_db2 driver
persistent: ~

The protocol to use for the ibm_db2 driver (default to TCPIP if omitted)
protocol: ~

True to use dbname as service name instead of SID for Oracle
service: ~

PDF brought to you by
generated on February 20, 2013

Chapter 3: Doctrine Configuration Reference | 15

http://sensiolabs.com

The session mode to use for the oci8 driver
sessionMode: ~

True to use a pooled server with the oci8 driver
pooled: ~

Configuring MultipleActiveResultSets for the pdo_sqlsrv driver
MultipleActiveResultSets: ~
driver: pdo_mysql
platform_service: ~
logging: %kernel.debug%
profiling: %kernel.debug%
driver_class: ~
wrapper_class: ~
options:

an array of options
key: []

mapping_types:
an array of mapping types
name: []

slaves:

a collection of named slave connections (e.g. slave1, slave2)
slave1:

dbname: ~
host: localhost
port: ~
user: root
password: ~
charset: ~
path: ~
memory: ~

The unix socket to use for MySQL
unix_socket: ~

True to use as persistent connection for the ibm_db2 driver
persistent: ~

The protocol to use for the ibm_db2 driver (default to TCPIP if
omitted)

protocol: ~

True to use dbname as service name instead of SID for Oracle
service: ~

The session mode to use for the oci8 driver
sessionMode: ~

True to use a pooled server with the oci8 driver
pooled: ~

Configuring MultipleActiveResultSets for the pdo_sqlsrv driver
MultipleActiveResultSets: ~

orm:
default_entity_manager: ~
auto_generate_proxy_classes: false
proxy_dir: %kernel.cache_dir%/doctrine/orm/Proxies
proxy_namespace: Proxies
search for the "ResolveTargetEntityListener" class for a cookbook about this

PDF brought to you by
generated on February 20, 2013

Chapter 3: Doctrine Configuration Reference | 16

http://sensiolabs.com

resolve_target_entities: []
entity_managers:

A collection of different named entity managers (e.g. some_em, another_em)
some_em:

query_cache_driver:
type: array # Required
host: ~
port: ~
instance_class: ~
class: ~

metadata_cache_driver:
type: array # Required
host: ~
port: ~
instance_class: ~
class: ~

result_cache_driver:
type: array # Required
host: ~
port: ~
instance_class: ~
class: ~

connection: ~
class_metadata_factory_name: Doctrine\ORM\Mapping\ClassMetadataFactory
default_repository_class: Doctrine\ORM\EntityRepository
auto_mapping: false
hydrators:

An array of hydrator names
hydrator_name: []

mappings:
An array of mappings, which may be a bundle name or something else
mapping_name:

mapping: true
type: ~
dir: ~
alias: ~
prefix: ~
is_bundle: ~

dql:
a collection of string functions
string_functions:

example
test_string: Acme\HelloBundle\DQL\StringFunction

a collection of numeric functions
numeric_functions:

example
test_numeric: Acme\HelloBundle\DQL\NumericFunction

a collection of datetime functions
datetime_functions:

example
test_datetime: Acme\HelloBundle\DQL\DatetimeFunction

Register SQL Filters in the entity manager
filters:

An array of filters
some_filter:

class: ~ # Required
enabled: false

PDF brought to you by
generated on February 20, 2013

Chapter 3: Doctrine Configuration Reference | 17

http://sensiolabs.com

Listing 3-2

Listing 3-3

Configuration Overview
This following configuration example shows all the configuration defaults that the ORM resolves to:

1
2
3
4
5
6
7
8
9

10
11

doctrine:
orm:

auto_mapping: true
the standard distribution overrides this to be true in debug, false otherwise
auto_generate_proxy_classes: false
proxy_namespace: Proxies
proxy_dir: "%kernel.cache_dir%/doctrine/orm/Proxies"
default_entity_manager: default
metadata_cache_driver: array
query_cache_driver: array
result_cache_driver: array

There are lots of other configuration options that you can use to overwrite certain classes, but those are
for very advanced use-cases only.

Caching Drivers

For the caching drivers you can specify the values "array", "apc", "memcache", "memcached", "xcache"
or "service".

The following example shows an overview of the caching configurations:

1
2
3
4
5
6
7
8
9

10
11
12

doctrine:
orm:

auto_mapping: true
metadata_cache_driver: apc
query_cache_driver:

type: service
id: my_doctrine_common_cache_service

result_cache_driver:
type: memcache
host: localhost
port: 11211
instance_class: Memcache

Mapping Configuration

Explicit definition of all the mapped entities is the only necessary configuration for the ORM and there
are several configuration options that you can control. The following configuration options exist for a
mapping:

• type One of annotation, xml, yml, php or staticphp. This specifies which type of metadata
type your mapping uses.

• dir Path to the mapping or entity files (depending on the driver). If this path is relative it is
assumed to be relative to the bundle root. This only works if the name of your mapping is a
bundle name. If you want to use this option to specify absolute paths you should prefix the
path with the kernel parameters that exist in the DIC (for example %kernel.root_dir%).

• prefix A common namespace prefix that all entities of this mapping share. This prefix should
never conflict with prefixes of other defined mappings otherwise some of your entities cannot
be found by Doctrine. This option defaults to the bundle namespace + Entity, for example for
an application bundle called AcmeHelloBundle prefix would be Acme\HelloBundle\Entity.

PDF brought to you by
generated on February 20, 2013

Chapter 3: Doctrine Configuration Reference | 18

http://sensiolabs.com

Listing 3-4

Listing 3-5

• alias Doctrine offers a way to alias entity namespaces to simpler, shorter names to be used
in DQL queries or for Repository access. When using a bundle the alias defaults to the bundle
name.

• is_bundle This option is a derived value from dir and by default is set to true if dir is relative
proved by a file_exists() check that returns false. It is false if the existence check returns
true. In this case an absolute path was specified and the metadata files are most likely in a
directory outside of a bundle.

Doctrine DBAL Configuration
DoctrineBundle supports all parameters that default Doctrine drivers accept, converted to the XML
or YAML naming standards that Symfony enforces. See the Doctrine DBAL documentation1 for more
information. The following block shows all possible configuration keys:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

doctrine:
dbal:

dbname: database
host: localhost
port: 1234
user: user
password: secret
driver: pdo_mysql
the DBAL driverClass option
driver_class: MyNamespace\MyDriverImpl
the DBAL driverOptions option
options:

foo: bar
path: "%kernel.data_dir%/data.sqlite"
memory: true
unix_socket: /tmp/mysql.sock
the DBAL wrapperClass option
wrapper_class: MyDoctrineDbalConnectionWrapper
charset: UTF8
logging: "%kernel.debug%"
platform_service: MyOwnDatabasePlatformService
mapping_types:

enum: string
types:

custom: Acme\HelloBundle\MyCustomType
the DBAL keepSlave option
keep_slave: false

If you want to configure multiple connections in YAML, put them under the connections key and give
them a unique name:

1
2
3
4
5
6
7
8
9

doctrine:
dbal:

default_connection: default
connections:

default:
dbname: Symfony2
user: root
password: null
host: localhost

1. http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/configuration.html

PDF brought to you by
generated on February 20, 2013

Chapter 3: Doctrine Configuration Reference | 19

http://sensiolabs.com

10
11
12
13
14

customer:
dbname: customer
user: root
password: null
host: localhost

The database_connection service always refers to the default connection, which is the first one defined
or the one configured via the default_connection parameter.

Each connection is also accessible via the doctrine.dbal.[name]_connection service where [name] if
the name of the connection.

PDF brought to you by
generated on February 20, 2013

Chapter 3: Doctrine Configuration Reference | 20

http://sensiolabs.com

Listing 4-1

Chapter 4

Security Configuration Reference

The security system is one of the most powerful parts of Symfony2, and can largely be controlled via its
configuration.

Full Default Configuration
The following is the full default configuration for the security system. Each part will be explained in the
next section.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

app/config/security.yml
security:

access_denied_url: ~ # Example: /foo/error403

strategy can be: none, migrate, invalidate
session_fixation_strategy: migrate
hide_user_not_found: true
always_authenticate_before_granting: false
erase_credentials: true
access_decision_manager:

strategy: affirmative
allow_if_all_abstain: false
allow_if_equal_granted_denied: true

acl:

any name configured in doctrine.dbal section
connection: ~
cache:

id: ~
prefix: sf2_acl_

provider: ~
tables:

class: acl_classes
entry: acl_entries
object_identity: acl_object_identities
object_identity_ancestors: acl_object_identity_ancestors

PDF brought to you by
generated on February 20, 2013

Chapter 4: Security Configuration Reference | 21

http://sensiolabs.com

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

security_identity: acl_security_identities
voter:

allow_if_object_identity_unavailable: true

encoders:
Examples:
Acme\DemoBundle\Entity\User1: sha512
Acme\DemoBundle\Entity\User2:

algorithm: sha512
encode_as_base64: true
iterations: 5000

PBKDF2 encoder
see the note about PBKDF2 below for details on security and speed
Acme\Your\Class\Name:

algorithm: pbkdf2
hash_algorithm: sha512
encode_as_base64: true
iterations: 1000

Example options/values for what a custom encoder might look like
Acme\Your\Class\Name:

algorithm: ~
ignore_case: false
encode_as_base64: true
iterations: 5000
id: ~

providers: # Required
Examples:
memory:

name: memory
users:

foo:
password: foo
roles: ROLE_USER

bar:
password: bar
roles: [ROLE_USER, ROLE_ADMIN]

entity:
entity:

class: SecurityBundle:User
property: username

Example custom provider
some_custom_provider:

id: ~
chain:

providers: []

firewalls: # Required
Examples:
somename:

pattern: .*
request_matcher: some.service.id
access_denied_url: /foo/error403
access_denied_handler: some.service.id
entry_point: some.service.id
provider: some_key_from_above

PDF brought to you by
generated on February 20, 2013

Chapter 4: Security Configuration Reference | 22

http://sensiolabs.com

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

context: name
stateless: false
x509:

provider: some_key_from_above
http_basic:

provider: some_key_from_above
http_digest:

provider: some_key_from_above
form_login:

submit the login form here
check_path: /login_check

the user is redirected here when he/she needs to login
login_path: /login

if true, forward the user to the login form instead of redirecting
use_forward: false

login success redirecting options (read further below)
always_use_default_target_path: false
default_target_path: /
target_path_parameter: _target_path
use_referer: false

login failure redirecting options (read further below)
failure_path: /foo
failure_forward: false
failure_path_parameter: _failure_path
failure_handler: some.service.id
success_handler: some.service.id

field names for the username and password fields
username_parameter: _username
password_parameter: _password

csrf token options
csrf_parameter: _csrf_token
intention: authenticate
csrf_provider: my.csrf_provider.id

by default, the login form *must* be a POST, not a GET
post_only: true
remember_me: false

remember_me:
token_provider: name
key: someS3cretKey
name: NameOfTheCookie
lifetime: 3600 # in seconds
path: /foo
domain: somedomain.foo
secure: false
httponly: true
always_remember_me: false
remember_me_parameter: _remember_me

logout:
path: /logout
target: /
invalidate_session: false
delete_cookies:

PDF brought to you by
generated on February 20, 2013

Chapter 4: Security Configuration Reference | 23

http://sensiolabs.com

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

a: { path: null, domain: null }
b: { path: null, domain: null }

handlers: [some.service.id, another.service.id]
success_handler: some.service.id

anonymous: ~

Default values and options for any firewall
some_firewall_listener:

pattern: ~
security: true
request_matcher: ~
access_denied_url: ~
access_denied_handler: ~
entry_point: ~
provider: ~
stateless: false
context: ~
logout:

csrf_parameter: _csrf_token
csrf_provider: ~
intention: logout
path: /logout
target: /
success_handler: ~
invalidate_session: true
delete_cookies:

Prototype
name:

path: ~
domain: ~

handlers: []
anonymous:

key: 4f954a0667e01
switch_user:

provider: ~
parameter: _switch_user
role: ROLE_ALLOWED_TO_SWITCH

access_control:
requires_channel: ~

use the urldecoded format
path: ~ # Example: ^/path to resource/
host: ~
ip: ~
methods: []
roles: []

role_hierarchy:
ROLE_ADMIN: [ROLE_ORGANIZER, ROLE_USER]
ROLE_SUPERADMIN: [ROLE_ADMIN]

Form Login Configuration
When using the form_login authentication listener beneath a firewall, there are several common options
for configuring the "form login" experience.

PDF brought to you by
generated on February 20, 2013

Chapter 4: Security Configuration Reference | 24

http://sensiolabs.com

For even more details, see How to customize your Form Login.

The Login Form and Process

• login_path (type: string, default: /login) This is the route or path that the user will be
redirected to (unless use_forward is set to true) when he/she tries to access a protected
resource but isn't fully authenticated.

This path must be accessible by a normal, un-authenticated user, else you may create a redirect
loop. For details, see "Avoid Common Pitfalls".

• check_path (type: string, default: /login_check) This is the route or path that your login
form must submit to. The firewall will intercept any requests (POST requests only, by default)
to this URL and process the submitted login credentials.

Be sure that this URL is covered by your main firewall (i.e. don't create a separate firewall just
for check_path URL).

• use_forward (type: Boolean, default: false) If you'd like the user to be forwarded to the login
form instead of being redirected, set this option to true.

• username_parameter (type: string, default: _username) This is the field name that you
should give to the username field of your login form. When you submit the form to
check_path, the security system will look for a POST parameter with this name.

• password_parameter (type: string, default: _password) This is the field name that you
should give to the password field of your login form. When you submit the form to
check_path, the security system will look for a POST parameter with this name.

• post_only (type: Boolean, default: true) By default, you must submit your login form to the
check_path URL as a POST request. By setting this option to false, you can send a GET
request to the check_path URL.

Redirecting after Login

• always_use_default_target_path (type: Boolean, default: false)
• default_target_path (type: string, default: /)
• target_path_parameter (type: string, default: _target_path)
• use_referer (type: Boolean, default: false)

Using the PBKDF2 encoder: security and speed

New in version 2.2: The PBKDF2 password encoder was added in Symfony 2.2.

The PBKDF21 encoder provides a high level of Cryptographic security, as recommended by the National
Institute of Standards and Technology (NIST).

You can see an example of the pbkdf2 encoder in the YAML block on this page.

But using PBKDF2 also warrants a warning: using it (with a high number of iterations) slows down the
process. Thus, PBKDF2 should be used with caution and care.

A good configuration lies around at least 1000 iterations and sha512 for the hash algorithm.

1. http://en.wikipedia.org/wiki/PBKDF2

PDF brought to you by
generated on February 20, 2013

Chapter 4: Security Configuration Reference | 25

http://sensiolabs.com

Listing 4-2

Listing 4-3

Using the BCrypt Password Encoder

New in version 2.2: The BCrypt password encoder was added in Symfony 2.2.

1
2
3
4
5
6
7

app/config/security.yml
security:

...
encoders:

Symfony\Component\Security\Core\User\User:
algorithm: bcrypt
cost: 15

The cost can be in the range of 4-31 and determines how long a password will be encoded. Each
increment of cost doubles the time it takes to encode a password.

If you don't provide the cost option, the default cost of 13 is used.

You can change the cost at any time — even if you already have some passwords encoded using a
different cost. New passwords will be encoded using the new cost, while the already encoded ones
will be validated using a cost that was used back when they were encoded.

A salt for each new password is generated automatically and need not be persisted. Since an encoded
password contains the salt used to encode it, persisting the encoded password alone is enough.

All the encoded passwords are 60 characters long, so make sure to allocate enough space for them
to be persisted.

HTTP-Digest Authentication
To use HTTP-Digest authentication you need to provide a realm and a key:

1
2
3
4
5
6
7

app/config/security.yml
security:

firewalls:
somename:
http_digest:
key: "a_random_string"
realm: "secure-api"

PDF brought to you by
generated on February 20, 2013

Chapter 4: Security Configuration Reference | 26

http://sensiolabs.com

Chapter 5

SwiftmailerBundle Configuration
("swiftmailer")

This reference document is a work in progress. It should be accurate, but all options are not yet fully
covered. For a full list of the default configuration options, see Full Default Configuration

The swiftmailer key configures Symfony's integration with Swiftmailer, which is responsible for
creating and delivering email messages.

Configuration
• transport

• username

• password

• host

• port

• encryption

• auth_mode
• spool

• type
• path

• sender_address
• antiflood

• threshold
• sleep

• delivery_address

• disable_delivery

PDF brought to you by
generated on February 20, 2013

Chapter 5: SwiftmailerBundle Configuration ("swiftmailer") | 27

http://sensiolabs.com

• logging

transport

type: string default: smtp

The exact transport method to use to deliver emails. Valid values are:

• smtp
• gmail (see How to use Gmail to send Emails)
• mail
• sendmail
• null (same as setting disable_delivery to true)

username

type: string

The username when using smtp as the transport.

password

type: string

The password when using smtp as the transport.

host

type: string default: localhost

The host to connect to when using smtp as the transport.

port

type: string default: 25 or 465 (depending on encryption)

The port when using smtp as the transport. This defaults to 465 if encryption is ssl and 25 otherwise.

encryption

type: string

The encryption mode to use when using smtp as the transport. Valid values are tls, ssl, or null
(indicating no encryption).

auth_mode

type: string

The authentication mode to use when using smtp as the transport. Valid values are plain, login, cram-
md5, or null.

spool

For details on email spooling, see How to Spool Emails.

type

type: string default: file

PDF brought to you by
generated on February 20, 2013

Chapter 5: SwiftmailerBundle Configuration ("swiftmailer") | 28

http://sensiolabs.com

The method used to store spooled messages. Currently only file is supported. However, a custom spool
should be possible by creating a service called swiftmailer.spool.myspool and setting this value to
myspool.

path

type: string default: %kernel.cache_dir%/swiftmailer/spool

When using the file spool, this is the path where the spooled messages will be stored.

sender_address

type: string

If set, all messages will be delivered with this address as the "return path" address, which is where
bounced messages should go. This is handled internally by Swiftmailer's
Swift_Plugins_ImpersonatePlugin class.

antiflood

threshold

type: string default: 99

Used with Swift_Plugins_AntiFloodPlugin. This is the number of emails to send before restarting the
transport.

sleep

type: string default: 0

Used with Swift_Plugins_AntiFloodPlugin. This is the number of seconds to sleep for during a
transport restart.

delivery_address

type: string

If set, all email messages will be sent to this address instead of being sent to their actual recipients. This is
often useful when developing. For example, by setting this in the config_dev.yml file, you can guarantee
that all emails sent during development go to a single account.

This uses Swift_Plugins_RedirectingPlugin. Original recipients are available on the X-Swift-To, X-
Swift-Cc and X-Swift-Bcc headers.

disable_delivery

type: Boolean default: false

If true, the transport will automatically be set to null, and no emails will actually be delivered.

logging

type: Boolean default: %kernel.debug%

If true, Symfony's data collector will be activated for Swiftmailer and the information will be available in
the profiler.

PDF brought to you by
generated on February 20, 2013

Chapter 5: SwiftmailerBundle Configuration ("swiftmailer") | 29

http://sensiolabs.com

Listing 5-1

Full Default Configuration

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

swiftmailer:
transport: smtp
username: ~
password: ~
host: localhost
port: false
encryption: ~
auth_mode: ~
spool:

type: file
path: "%kernel.cache_dir%/swiftmailer/spool"

sender_address: ~
antiflood:

threshold: 99
sleep: 0

delivery_address: ~
disable_delivery: ~
logging: "%kernel.debug%"

PDF brought to you by
generated on February 20, 2013

Chapter 5: SwiftmailerBundle Configuration ("swiftmailer") | 30

http://sensiolabs.com

Listing 6-1

Chapter 6

TwigBundle Configuration Reference

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

twig:
exception_controller:

Symfony\Bundle\TwigBundle\Controller\ExceptionController::showAction
form:

resources:

Default:
- form_div_layout.html.twig

Example:
- MyBundle::form.html.twig

globals:

Examples:
foo: "@bar"
pi: 3.14

Example options, but the easiest use is as seen above
some_variable_name:

a service id that should be the value
id: ~
set to service or leave blank
type: ~
value: ~

autoescape: ~
base_template_class: ~ # Example: Twig_Template
cache: "%kernel.cache_dir%/twig"
charset: "%kernel.charset%"
debug: "%kernel.debug%"
strict_variables: ~
auto_reload: ~
optimizations: ~

PDF brought to you by
generated on February 20, 2013

Chapter 6: TwigBundle Configuration Reference | 31

http://sensiolabs.com

Configuration

exception_controller

type: string default:
Symfony\\Bundle\\TwigBundle\\Controller\\ExceptionController::showAction

This is the controller that is activated after an exception is thrown anywhere in your application. The
default controller (ExceptionController1) is what's responsible for rendering specific templates under
different error conditions (see How to customize Error Pages). Modifying this option is advanced. If you
need to customize an error page you should use the previous link. If you need to perform some behavior
on an exception, you should add a listener to the kernel.exception event (see kernel.event_listener).

1. http://api.symfony.com/master/Symfony/Bundle/TwigBundle/Controller/ExceptionController.html

PDF brought to you by
generated on February 20, 2013

Chapter 6: TwigBundle Configuration Reference | 32

http://sensiolabs.com

Listing 7-1

Chapter 7

Monolog Configuration Reference

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

monolog:
handlers:

Examples:
syslog:

type: stream
path: /var/log/symfony.log
level: ERROR
bubble: false
formatter: my_formatter
processors:

- some_callable
main:

type: fingers_crossed
action_level: WARNING
buffer_size: 30
handler: custom

custom:
type: service
id: my_handler

Default options and values for some "my_custom_handler"
my_custom_handler:

type: ~ # Required
id: ~
priority: 0
level: DEBUG
bubble: true
path: "%kernel.logs_dir%/%kernel.environment%.log"
ident: false
facility: user
max_files: 0
action_level: WARNING
activation_strategy: ~
stop_buffering: true
buffer_size: 0

PDF brought to you by
generated on February 20, 2013

Chapter 7: Monolog Configuration Reference | 33

http://sensiolabs.com

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

handler: ~
members: []
channels:

type: ~
elements: ~

from_email: ~
to_email: ~
subject: ~
email_prototype:

id: ~ # Required (when the email_prototype is used)
factory-method: ~

channels:
type: ~
elements: []

formatter: ~

When the profiler is enabled, a handler is added to store the logs' messages in the profiler. The
profiler uses the name "debug" so it is reserved and cannot be used in the configuration.

PDF brought to you by
generated on February 20, 2013

Chapter 7: Monolog Configuration Reference | 34

http://sensiolabs.com

Listing 8-1

Chapter 8

WebProfilerBundle Configuration

Full Default Configuration

1
2
3
4
5
6
7
8
9

10
11

web_profiler:

DEPRECATED, it is not useful anymore and can be removed safely from your
configuration

verbose: true

display the web debug toolbar at the bottom of pages with a summary of profiler info
toolbar: false
position: bottom

gives you the opportunity to look at the collected data before following the redirect
intercept_redirects: false

PDF brought to you by
generated on February 20, 2013

Chapter 8: WebProfilerBundle Configuration | 35

http://sensiolabs.com

Chapter 9

Form Types Reference

A form is composed of fields, each of which are built with the help of a field type (e.g. a text type, choice
type, etc). Symfony2 comes standard with a large list of field types that can be used in your application.

Supported Field Types
The following field types are natively available in Symfony2:

Text Fields

• text
• textarea
• email
• integer
• money
• number
• password
• percent
• search
• url

Choice Fields

• choice
• entity
• country
• language
• locale
• timezone

Date and Time Fields

• date

PDF brought to you by
generated on February 20, 2013

Chapter 9: Form Types Reference | 36

http://sensiolabs.com

• datetime
• time
• birthday

Other Fields

• checkbox
• file
• radio

Field Groups

• collection
• repeated

Hidden Fields

• hidden
• csrf

Base Fields

• field
• form

PDF brought to you by
generated on February 20, 2013

Chapter 9: Form Types Reference | 37

http://sensiolabs.com

Chapter 10

birthday Field Type

A date field that specializes in handling birthdate data.

Can be rendered as a single text box, three text boxes (month, day, and year), or three select boxes.

This type is essentially the same as the date type, but with a more appropriate default for the years option.
The years option defaults to 120 years ago to the current year.

Underlying
Data Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as can be three select boxes or 1 or 3 text boxes, based on the widget option

Options
• years

Inherited
options • widget

• input
• months
• days
• format
• pattern
• data_timezone
• user_timezone
• invalid_message
• invalid_message_parameters
• read_only
• disabled

Parent type date

Class BirthdayType1

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/BirthdayType.html

PDF brought to you by
generated on February 20, 2013

Chapter 10: birthday Field Type | 38

http://sensiolabs.com

Listing 10-1

Field Options

years

type: array default: 120 years ago to the current year

List of years available to the year field type. This option is only relevant when the widget option is set to
choice.

Inherited options
These options inherit from the date type:

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders three select inputs. The order of the selects is defined in the pattern option.
• text: renders a three field input of type text (month, day, year).
• single_text: renders a single input of type date (text in Symfony 2.0). User's input is validated

based on the format option.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 2011-06-05)
• datetime (a DateTime object)
• array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))
• timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into this format.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant when the widget option is
set to choice.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant when the widget option is set to
choice:

1 'days' => range(1,31)

PDF brought to you by
generated on February 20, 2013

Chapter 10: birthday Field Type | 39

http://sensiolabs.com

Listing 10-2

format

type: integer or string default: IntlDateFormatter::MEDIUM

Option passed to the IntlDateFormatter class, used to transform user input into the proper format.
This is critical when the widget option is set to single_text, and will define how the user will input the
data. By default, the format is determined based on the current user locale: meaning that the expected
format will be different for different users. You can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax2. For example, to render a single
text box that expects the user to end yyyy-MM-dd, use the following options:

1
2
3
4

$builder->add('date_created', 'date', array(
'widget' => 'single_text',
'format' => 'yyyy-MM-dd',

));

pattern

type: string

This option is only relevant when the widget is set to choice. The default pattern is based off the format
option, and tries to match the characters M, d, and y in the format pattern. If no match is found, the
default is the string {{ year }}-{{ month }}-{{ day }}. Tokens for this option include:

• {{ year }}: Replaced with the year widget
• {{ month }}: Replaced with the month widget
• {{ day }}: Replaced with the day widget

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones3

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones4

These options inherit from the date type:

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

2. http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax

3. http://php.net/manual/en/timezones.php

4. http://php.net/manual/en/timezones.php

PDF brought to you by
generated on February 20, 2013

Chapter 10: birthday Field Type | 40

http://sensiolabs.com

Listing 10-3

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',
'invalid_message_parameters' => array('%num%' => 6),

));

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by
generated on February 20, 2013

Chapter 10: birthday Field Type | 41

http://sensiolabs.com

Listing 11-1

Chapter 11

checkbox Field Type

Creates a single input checkbox. This should always be used for a field that has a Boolean value: if the
box is checked, the field will be set to true, if the box is unchecked, the value will be set to false.

Rendered as input checkbox field

Options
• value

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling

Parent type field

Class CheckboxType1

Example Usage

1
2
3
4

$builder->add('public', 'checkbox', array(
'label' => 'Show this entry publicly?',
'required' => false,

));

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/CheckboxType.html

PDF brought to you by
generated on February 20, 2013

Chapter 11: checkbox Field Type | 42

http://sensiolabs.com

Listing 11-2

Field Options

value

type: mixed default: 1

The value that's actually used as the value for the checkbox. This does not affect the value that's set on
your object.

Inherited options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 11: checkbox Field Type | 43

http://sensiolabs.com

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 11: checkbox Field Type | 44

http://sensiolabs.com

Chapter 12

choice Field Type

A multi-purpose field used to allow the user to "choose" one or more options. It can be rendered as a
select tag, radio buttons, or checkboxes.

To use this field, you must specify either the choice_list or choices option.

Rendered as can be various tags (see below)

Options
• choices
• choice_list
• multiple
• expanded
• preferred_choices
• empty_value
• empty_data
• by_reference

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling

Parent type form (if expanded), field otherwise

Class ChoiceType1

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/ChoiceType.html

PDF brought to you by
generated on February 20, 2013

Chapter 12: choice Field Type | 45

http://sensiolabs.com

Listing 12-1

Listing 12-2

Listing 12-3

Example Usage
The easiest way to use this field is to specify the choices directly via the choices option. The key of the
array becomes the value that's actually set on your underlying object (e.g. m), while the value is what the
user sees on the form (e.g. Male).

1
2
3
4

$builder->add('gender', 'choice', array(
'choices' => array('m' => 'Male', 'f' => 'Female'),
'required' => false,

));

By setting multiple to true, you can allow the user to choose multiple values. The widget will be
rendered as a multiple select tag or a series of checkboxes depending on the expanded option:

1
2
3
4
5
6
7
8

$builder->add('availability', 'choice', array(
'choices' => array(

'morning' => 'Morning',
'afternoon' => 'Afternoon',
'evening' => 'Evening',

),
'multiple' => true,

));

You can also use the choice_list option, which takes an object that can specify the choices for your
widget.

Select tag, Checkboxes or Radio Buttons
This field may be rendered as one of several different HTML fields, depending on the expanded and
multiple options:

element type expanded multiple

select tag false false

select tag (with multiple attribute) false true

radio buttons true false

checkboxes true true

Field Options

choices

type: array default: array()

This is the most basic way to specify the choices that should be used by this field. The choices option is
an array, where the array key is the item value and the array value is the item's label:

1
2
3

$builder->add('gender', 'choice', array(
'choices' => array('m' => 'Male', 'f' => 'Female')

));

PDF brought to you by
generated on February 20, 2013

Chapter 12: choice Field Type | 46

http://sensiolabs.com

Listing 12-4

Listing 12-5

Listing 12-6

choice_list

type: Symfony\Component\Form\Extension\Core\ChoiceList\ChoiceListInterface

This is one way of specifying the options to be used for this field. The choice_list option must be an
instance of the ChoiceListInterface. For more advanced cases, a custom class that implements the
interface can be created to supply the choices.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false, a
select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be moved to the top of the select menu.
The following would move the "Baz" option to the top, with a visual separator between it and the rest of
the options:

1
2
3
4

$builder->add('foo_choices', 'choice', array(
'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
'preferred_choices' => array('baz'),

));

Note that preferred choices are only meaningful when rendering as a select element (i.e. expanded is
false). The preferred choices and normal choices are separated visually by a set of dotted lines (i.e. -----
--------------). This can be customized when rendering the field:

1 {{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

empty_value

type: string or Boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if both the expanded and multiple options are set to
false.

• Add an empty value with "Choose an option" as the text:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

PDF brought to you by
generated on February 20, 2013

Chapter 12: choice Field Type | 47

http://sensiolabs.com

Listing 12-7

Listing 12-8

Listing 12-9

Listing 12-10

Listing 12-11

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => false,

));

If you leave the empty_value option unset, then a blank (with no text) option will automatically be added
if and only if the required option is false:

1
2
3
4

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(

'required' => false,
));

empty_data

type: mixed default: array() if multiple or expanded, '' otherwise

This option determines what value the field will return when the empty_value choice is selected.

For example, if you want the gender field to be set to null when no value is selected, you can do it like
this:

1
2
3
4
5
6
7
8
9

$builder->add('gender', 'choice', array(
'choices' => array(

'm' => 'Male',
'f' => 'Female'

),
'required' => false,
'empty_value' => 'Choose your gender',
'empty_data' => null

));

by_reference

type: Boolean default: true

In most cases, if you have a name field, then you expect setName to be called on the underlying object. In
some cases, however, setName may not be called. Setting by_reference ensures that the setter is called
in all cases.

To explain this further, here's a simple example:

1
2
3
4
5
6
7
8

$builder = $this->createFormBuilder($article);
$builder

->add('title', 'text')
->add(

$builder->create('author', 'form', array('by_reference' => ?))
->add('name', 'text')
->add('email', 'email')

)

If by_reference is true, the following takes place behind the scenes when you call bind on the form:

1
2
3

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

PDF brought to you by
generated on February 20, 2013

Chapter 12: choice Field Type | 48

http://sensiolabs.com

Listing 12-12

Listing 12-13

Notice that setAuthor is not called. The author is modified by reference.

If you set by_reference to false, binding looks like this:

1
2
3
4
5

$article->setTitle('...');
$author = $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to call the setter on the parent object.

Similarly, if you're using the collection form type where your underlying collection data is an object (like
with Doctrine's ArrayCollection), then by_reference must be set to false if you need the setter (e.g.
setAuthors) to be called.

Inherited options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 12: choice Field Type | 49

http://sensiolabs.com

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 12: choice Field Type | 50

http://sensiolabs.com

Listing 13-1

Chapter 13

collection Field Type

This field type is used to render a "collection" of some field or form. In the easiest sense, it could be an
array of text fields that populate an array emails field. In more complex examples, you can embed entire
forms, which is useful when creating forms that expose one-to-many relationships (e.g. a product from
where you can manage many related product photos).

Rendered as depends on the type option

Options
• type
• options
• allow_add
• allow_delete
• prototype
• prototype_name

Inherited
options • label

• error_bubbling
• by_reference

Parent type form

Class CollectionType1

Basic Usage
This type is used when you want to manage a collection of similar items in a form. For example, suppose
you have an emails field that corresponds to an array of email addresses. In the form, you want to expose
each email address as its own input text box:

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/CollectionType.html

PDF brought to you by
generated on February 20, 2013

Chapter 13: collection Field Type | 51

http://sensiolabs.com

Listing 13-2

Listing 13-3

Listing 13-4

Listing 13-5

1
2
3
4
5
6
7
8
9

$builder->add('emails', 'collection', array(
// each item in the array will be an "email" field
'type' => 'email',
// these options are passed to each "email" type
'options' => array(

'required' => false,
'attr' => array('class' => 'email-box')

),
));

The simplest way to render this is all at once:

1 {{ form_row(form.emails) }}

A much more flexible method would look like this:

1
2
3
4
5
6
7
8
9

10
11

{{ form_label(form.emails) }}
{{ form_errors(form.emails) }}

{% for emailField in form.emails %}

{{ form_errors(emailField) }}
{{ form_widget(emailField) }}

{% endfor %}

In both cases, no input fields would render unless your emails data array already contained some emails.

In this simple example, it's still impossible to add new addresses or remove existing addresses. Adding
new addresses is possible by using the allow_add option (and optionally the prototype option) (see
example below). Removing emails from the emails array is possible with the allow_delete option.

Adding and Removing items

If allow_add is set to true, then if any unrecognized items are submitted, they'll be added seamlessly to
the array of items. This is great in theory, but takes a little bit more effort in practice to get the client-side
JavaScript correct.

Following along with the previous example, suppose you start with two emails in the emails data array.
In that case, two input fields will be rendered that will look something like this (depending on the name
of your form):

1
2

<input type="email" id="form_emails_0" name="form[emails][0]" value="foo@foo.com" />
<input type="email" id="form_emails_1" name="form[emails][1]" value="bar@bar.com" />

To allow your user to add another email, just set allow_add to true and - via JavaScript - render another
field with the name form[emails][2] (and so on for more and more fields).

To help make this easier, setting the prototype option to true allows you to render a "template" field,
which you can then use in your JavaScript to help you dynamically create these new fields. A rendered
prototype field will look like this:

1 <input type="email" id="form_emails___name__" name="form[emails][__name__]" value="" />

PDF brought to you by
generated on February 20, 2013

Chapter 13: collection Field Type | 52

http://sensiolabs.com

Listing 13-6

By replacing __name__ with some unique value (e.g. 2), you can build and insert new HTML fields into
your form.

Using jQuery, a simple example might look like this. If you're rendering your collection fields all at
once (e.g. form_row(form.emails)), then things are even easier because the data-prototype attribute
is rendered automatically for you (with a slight difference - see note below) and all you need is the
JavaScript:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

<form action="..." method="POST" {{ form_enctype(form) }}>
{# ... #}

{# store the prototype on the data-prototype attribute #}
<ul id="email-fields-list" data-prototype="{{ form_widget(form.emails.vars.prototype)

| e }}">
{% for emailField in form.emails %}

{{ form_errors(emailField) }}
{{ form_widget(emailField) }}

{% endfor %}

Add another email

{# ... #}
</form>

<script type="text/javascript">
// keep track of how many email fields have been rendered
var emailCount = '{{ form.emails | length }}';

jQuery(document).ready(function() {
jQuery('#add-another-email').click(function() {

var emailList = jQuery('#email-fields-list');

// grab the prototype template
var newWidget = emailList.attr('data-prototype');
// replace the "__name__" used in the id and name of the prototype
// with a number that's unique to your emails
// end name attribute looks like name="contact[emails][2]"
newWidget = newWidget.replace(/__name__/g, emailCount);
emailCount++;

// create a new list element and add it to the list
var newLi = jQuery('').html(newWidget);
newLi.appendTo(jQuery('#email-fields-list'));

return false;
});

})
</script>

If you're rendering the entire collection at once, then the prototype is automatically available on
the data-prototype attribute of the element (e.g. div or table) that surrounds your collection.
The only difference is that the entire "form row" is rendered for you, meaning you wouldn't have
to wrap it in any container element as was done above.

PDF brought to you by
generated on February 20, 2013

Chapter 13: collection Field Type | 53

http://sensiolabs.com

Listing 13-7

Field Options

type

type: string or FormTypeInterface2 required

This is the field type for each item in this collection (e.g. text, choice, etc). For example, if you have an
array of email addresses, you'd use the email type. If you want to embed a collection of some other form,
create a new instance of your form type and pass it as this option.

options

type: array default: array()

This is the array that's passed to the form type specified in the type option. For example, if you used the
choice type as your type option (e.g. for a collection of drop-down menus), then you'd need to at least
pass the choices option to the underlying type:

1
2
3
4
5
6
7
8
9

10
11

$builder->add('favorite_cities', 'collection', array(
'type' => 'choice',
'options' => array(

'choices' => array(
'nashville' => 'Nashville',
'paris' => 'Paris',
'berlin' => 'Berlin',
'london' => 'London',

),
),

));

allow_add

type: Boolean default: false

If set to true, then if unrecognized items are submitted to the collection, they will be added as new items.
The ending array will contain the existing items as well as the new item that was in the submitted data.
See the above example for more details.

The prototype option can be used to help render a prototype item that can be used - with JavaScript - to
create new form items dynamically on the client side. For more information, see the above example and
Allowing "new" tags with the "prototype".

If you're embedding entire other forms to reflect a one-to-many database relationship, you may
need to manually ensure that the foreign key of these new objects is set correctly. If you're using
Doctrine, this won't happen automatically. See the above link for more details.

allow_delete

type: Boolean default: false

If set to true, then if an existing item is not contained in the submitted data, it will be correctly absent
from the final array of items. This means that you can implement a "delete" button via JavaScript which
simply removes a form element from the DOM. When the user submits the form, its absence from the
submitted data will mean that it's removed from the final array.

2. http://api.symfony.com/master/Symfony/Component/Form/FormTypeInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 13: collection Field Type | 54

http://sensiolabs.com

Listing 13-8

For more information, see Allowing tags to be removed.

Be careful when using this option when you're embedding a collection of objects. In this case, if
any embedded forms are removed, they will correctly be missing from the final array of objects.
However, depending on your application logic, when one of those objects is removed, you may
want to delete it or at least remove its foreign key reference to the main object. None of this is
handled automatically. For more information, see Allowing tags to be removed.

prototype

type: Boolean default: true

This option is useful when using the allow_add option. If true (and if allow_add is also true), a special
"prototype" attribute will be available so that you can render a "template" example on your page of what
a new element should look like. The name attribute given to this element is __name__. This allows you
to add a "add another" button via JavaScript which reads the prototype, replaces __name__ with some
unique name or number, and render it inside your form. When submitted, it will be added to your
underlying array due to the allow_add option.

The prototype field can be rendered via the prototype variable in the collection field:

1 {{ form_row(form.emails.vars.prototype) }}

Note that all you really need is the "widget", but depending on how you're rendering your form, having
the entire "form row" may be easier for you.

If you're rendering the entire collection field at once, then the prototype form row is automatically
available on the data-prototype attribute of the element (e.g. div or table) that surrounds your
collection.

For details on how to actually use this option, see the above example as well as Allowing "new" tags with
the "prototype".

prototype_name

New in version 2.1: The prototype_name option was added in Symfony 2.1

type: String default: __name__

If you have several collections in your form, or worse, nested collections you may want to change the
placeholder so that unrelated placeholders are not replaced with the same value.

Inherited options
These options inherit from the field type. Not all options are listed here - only the most applicable to this
type:

label

type: string default: The label is "guessed" from the field name

PDF brought to you by
generated on February 20, 2013

Chapter 13: collection Field Type | 55

http://sensiolabs.com

Listing 13-9

Listing 13-10

Listing 13-11

Listing 13-12

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

error_bubbling

type: Boolean default: true

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

by_reference

type: Boolean default: true

In most cases, if you have a name field, then you expect setName to be called on the underlying object. In
some cases, however, setName may not be called. Setting by_reference ensures that the setter is called
in all cases.

To explain this further, here's a simple example:

1
2
3
4
5
6
7
8

$builder = $this->createFormBuilder($article);
$builder

->add('title', 'text')
->add(

$builder->create('author', 'form', array('by_reference' => ?))
->add('name', 'text')
->add('email', 'email')

)

If by_reference is true, the following takes place behind the scenes when you call bind on the form:

1
2
3

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

Notice that setAuthor is not called. The author is modified by reference.

If you set by_reference to false, binding looks like this:

1
2
3
4
5

$article->setTitle('...');
$author = $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to call the setter on the parent object.

Similarly, if you're using the collection form type where your underlying collection data is an object (like
with Doctrine's ArrayCollection), then by_reference must be set to false if you need the setter (e.g.
setAuthors) to be called.

PDF brought to you by
generated on February 20, 2013

Chapter 13: collection Field Type | 56

http://sensiolabs.com

Chapter 14

country Field Type

The country type is a subset of the ChoiceType that displays countries of the world. As an added bonus,
the country names are displayed in the language of the user.

The "value" for each country is the two-letter country code.

The locale of your user is guessed using Locale::getDefault()1

Unlike the choice type, you don't need to specify a choices or choice_list option as the field type
automatically uses all of the countries of the world. You can specify either of these options manually, but
then you should just use the choice type directly.

Rendered as can be various tags (see Select tag, Checkboxes or Radio Buttons)

Inherited
options • multiple

• expanded
• preferred_choices
• empty_value
• error_bubbling
• required
• label
• read_only
• disabled

Parent type choice

Class CountryType2

1. http://php.net/manual/en/locale.getdefault.php

2. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/CountryType.html

PDF brought to you by
generated on February 20, 2013

Chapter 14: country Field Type | 57

http://sensiolabs.com

Listing 14-1

Listing 14-2

Listing 14-3

Listing 14-4

Inherited options
These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false, a
select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be moved to the top of the select menu.
The following would move the "Baz" option to the top, with a visual separator between it and the rest of
the options:

1
2
3
4

$builder->add('foo_choices', 'choice', array(
'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
'preferred_choices' => array('baz'),

));

Note that preferred choices are only meaningful when rendering as a select element (i.e. expanded is
false). The preferred choices and normal choices are separated visually by a set of dotted lines (i.e. -----
--------------). This can be customized when rendering the field:

1 {{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

empty_value

type: string or Boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if both the expanded and multiple options are set to
false.

• Add an empty value with "Choose an option" as the text:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

PDF brought to you by
generated on February 20, 2013

Chapter 14: country Field Type | 58

http://sensiolabs.com

Listing 14-5

Listing 14-6

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => false,

));

If you leave the empty_value option unset, then a blank (with no text) option will automatically be added
if and only if the required option is false:

1
2
3
4

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(

'required' => false,
));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

3. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 14: country Field Type | 59

http://sensiolabs.com

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by
generated on February 20, 2013

Chapter 14: country Field Type | 60

http://sensiolabs.com

Chapter 15

csrf Field Type

The csrf type is a hidden input field containing a CSRF token.

Rendered as input hidden field

Options
• csrf_provider
• intention
• property_path

Parent type hidden

Class CsrfType1

Field Options

csrf_provider

type: Symfony\Component\Form\CsrfProvider\CsrfProviderInterface

The CsrfProviderInterface object that should generate the CSRF token. If not set, this defaults to the
default provider.

intention

type: string

An optional unique identifier used to generate the CSRF token.

property_path

type: any default: the field's value

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Csrf/Type/CsrfType.html

PDF brought to you by
generated on February 20, 2013

Chapter 15: csrf Field Type | 61

http://sensiolabs.com

Fields display a property value of the form's domain object by default. When the form is submitted, the
submitted value is written back into the object.

If you want to override the property that a field reads from and writes to, you can set the property_path
option. Its default value is the field's name.

If you wish the field to be ignored when reading or writing to the object you can set the property_path
option to false, but using property_path for this purpose is deprecated, you should do it the way
described below:

New in version 2.1: Since 2.1, the mapped option has been added for this use-case.

PDF brought to you by
generated on February 20, 2013

Chapter 15: csrf Field Type | 62

http://sensiolabs.com

Chapter 16

date Field Type

A field that allows the user to modify date information via a variety of different HTML elements.

The underlying data used for this field type can be a DateTime object, a string, a timestamp or an array.
As long as the input option is set correctly, the field will take care of all of the details.

The field can be rendered as a single text box, three text boxes (month, day, and year) or three select
boxes (see the widget_ option).

Underlying Data
Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as single text box or three select fields

Options
• widget
• input
• empty_value
• years
• months
• days
• format
• pattern
• data_timezone
• user_timezone

Inherited options
• invalid_message
• invalid_message_parameters
• read_only
• disabled

Parent type field (if text), form otherwise

Class DateType1

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/DateType.html

PDF brought to you by
generated on February 20, 2013

Chapter 16: date Field Type | 63

http://sensiolabs.com

Listing 16-1

Listing 16-2

Basic Usage
This field type is highly configurable, but easy to use. The most important options are input and widget.

Suppose that you have a publishedAt field whose underlying date is a DateTime object. The following
configures the date type for that field as three different choice fields:

1
2
3
4

$builder->add('publishedAt', 'date', array(
'input' => 'datetime',
'widget' => 'choice',

));

The input option must be changed to match the type of the underlying date data. For example, if the
publishedAt field's data were a unix timestamp, you'd need to set input to timestamp:

1
2
3
4

$builder->add('publishedAt', 'date', array(
'input' => 'timestamp',
'widget' => 'choice',

));

The field also supports an array and string as valid input option values.

Field Options

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders three select inputs. The order of the selects is defined in the pattern option.
• text: renders a three field input of type text (month, day, year).
• single_text: renders a single input of type date (text in Symfony 2.0). User's input is validated

based on the format option.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 2011-06-05)
• datetime (a DateTime object)
• array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))
• timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into this format.

empty_value

type: string or array

If your widget option is set to choice, then this field will be represented as a series of select boxes. The
empty_value option can be used to add a "blank" entry to the top of each select box:

PDF brought to you by
generated on February 20, 2013

Chapter 16: date Field Type | 64

http://sensiolabs.com

Listing 16-3

Listing 16-4

Listing 16-5

Listing 16-6

1
2
3

$builder->add('dueDate', 'date', array(
'empty_value' => '',

));

Alternatively, you can specify a string to be displayed for the "blank" value:

1
2
3

$builder->add('dueDate', 'date', array(
'empty_value' => array('year' => 'Year', 'month' => 'Month', 'day' => 'Day')

));

years

type: array default: five years before to five years after the current year

List of years available to the year field type. This option is only relevant when the widget option is set to
choice.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant when the widget option is
set to choice.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant when the widget option is set to
choice:

1 'days' => range(1,31)

format

type: integer or string default: IntlDateFormatter::MEDIUM

Option passed to the IntlDateFormatter class, used to transform user input into the proper format.
This is critical when the widget option is set to single_text, and will define how the user will input the
data. By default, the format is determined based on the current user locale: meaning that the expected
format will be different for different users. You can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax2. For example, to render a single
text box that expects the user to end yyyy-MM-dd, use the following options:

1
2
3
4

$builder->add('date_created', 'date', array(
'widget' => 'single_text',
'format' => 'yyyy-MM-dd',

));

2. http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax

PDF brought to you by
generated on February 20, 2013

Chapter 16: date Field Type | 65

http://sensiolabs.com

Listing 16-7

pattern

type: string

This option is only relevant when the widget is set to choice. The default pattern is based off the format
option, and tries to match the characters M, d, and y in the format pattern. If no match is found, the
default is the string {{ year }}-{{ month }}-{{ day }}. Tokens for this option include:

• {{ year }}: Replaced with the year widget
• {{ month }}: Replaced with the month widget
• {{ day }}: Replaced with the day widget

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones3

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones4

Inherited options
These options inherit from the field type:

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',
'invalid_message_parameters' => array('%num%' => 6),

));

3. http://php.net/manual/en/timezones.php

4. http://php.net/manual/en/timezones.php

PDF brought to you by
generated on February 20, 2013

Chapter 16: date Field Type | 66

http://sensiolabs.com

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by
generated on February 20, 2013

Chapter 16: date Field Type | 67

http://sensiolabs.com

Chapter 17

datetime Field Type

This field type allows the user to modify data that represents a specific date and time (e.g. 1984-06-05
12:15:30).

Can be rendered as a text input or select tags. The underlying format of the data can be a DateTime
object, a string, a timestamp or an array.

Underlying Data
Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as single text box or three select fields

Options
• date_widget
• time_widget
• input
• date_format
• hours
• minutes
• seconds
• years
• months
• days
• with_seconds
• data_timezone
• user_timezone

Inherited options
• invalid_message
• invalid_message_parameters
• read_only
• disabled

Parent type form

Class DateTimeType1

PDF brought to you by
generated on February 20, 2013

Chapter 17: datetime Field Type | 68

http://sensiolabs.com

Field Options

date_widget

type: string default: choice

Defines the widget option for the date type

time_widget

type: string default: choice

Defines the widget option for the time type

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 2011-06-05 12:15:00)
• datetime (a DateTime object)
• array (e.g. array(2011, 06, 05, 12, 15, 0))
• timestamp (e.g. 1307276100)

The value that comes back from the form will also be normalized back into this format.

date_format

type: integer or string default: IntlDateFormatter::MEDIUM

Defines the format option that will be passed down to the date field. See the date type's format option for
more details.

hours

type: integer default: 0 to 23

List of hours available to the hours field type. This option is only relevant when the widget option is set
to choice.

minutes

type: integer default: 0 to 59

List of minutes available to the minutes field type. This option is only relevant when the widget option
is set to choice.

seconds

type: integer default: 0 to 59

List of seconds available to the seconds field type. This option is only relevant when the widget option is
set to choice.

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/DateTimeType.html

PDF brought to you by
generated on February 20, 2013

Chapter 17: datetime Field Type | 69

http://sensiolabs.com

Listing 17-1

years

type: array default: five years before to five years after the current year

List of years available to the year field type. This option is only relevant when the widget option is set to
choice.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant when the widget option is
set to choice.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant when the widget option is set to
choice:

1 'days' => range(1,31)

with_seconds

type: Boolean default: false

Whether or not to include seconds in the input. This will result in an additional input to capture seconds.

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones2

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones3

Inherited options
These options inherit from the field type:

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

2. http://php.net/manual/en/timezones.php

3. http://php.net/manual/en/timezones.php

PDF brought to you by
generated on February 20, 2013

Chapter 17: datetime Field Type | 70

http://sensiolabs.com

Listing 17-2

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',
'invalid_message_parameters' => array('%num%' => 6),

));

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by
generated on February 20, 2013

Chapter 17: datetime Field Type | 71

http://sensiolabs.com

Chapter 18

email Field Type

The email field is a text field that is rendered using the HTML5 <input type="email" /> tag.

Rendered as input email field (a text box)

Inherited
options • max_length

• required
• label
• trim
• read_only
• disabled
• error_bubbling

Parent type field

Class EmailType1

Inherited Options
These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by some browsers to limit the amount
of text in a field.

required

type: Boolean default: true

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/EmailType.html

PDF brought to you by
generated on February 20, 2013

Chapter 18: email Field Type | 72

http://sensiolabs.com

Listing 18-1

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim() function when the
data is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed
before the value is merged back onto the underlying object.

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 18: email Field Type | 73

http://sensiolabs.com

Chapter 19

entity Field Type

A special choice field that's designed to load options from a Doctrine entity. For example, if you have a
Category entity, you could use this field to display a select field of all, or some, of the Category objects
from the database.

Rendered as can be various tags (see Select tag, Checkboxes or Radio Buttons)

Options
• class
• property
• group_by
• query_builder
• em

Inherited
options • required

• label
• multiple
• expanded
• preferred_choices
• empty_value
• read_only
• disabled
• error_bubbling

Parent type choice

Class EntityType1

Basic Usage
The entity type has just one required option: the entity which should be listed inside the choice field:

1. http://api.symfony.com/master/Symfony/Bridge/Doctrine/Form/Type/EntityType.html

PDF brought to you by
generated on February 20, 2013

Chapter 19: entity Field Type | 74

http://sensiolabs.com

Listing 19-1

Listing 19-2

1
2
3
4

$builder->add('users', 'entity', array(
'class' => 'AcmeHelloBundle:User',
'property' => 'username',

));

In this case, all User objects will be loaded from the database and rendered as either a select tag, a set
or radio buttons or a series of checkboxes (this depends on the multiple and expanded values). If the
entity object does not have a __toString() method the property option is needed.

Using a Custom Query for the Entities

If you need to specify a custom query to use when fetching the entities (e.g. you only want to return some
entities, or need to order them), use the query_builder option. The easiest way to use the option is as
follows:

1
2
3
4
5
6
7
8
9

10

use Doctrine\ORM\EntityRepository;
// ...

$builder->add('users', 'entity', array(
'class' => 'AcmeHelloBundle:User',
'query_builder' => function(EntityRepository $er) {

return $er->createQueryBuilder('u')
->orderBy('u.username', 'ASC');

},
));

Select tag, Checkboxes or Radio Buttons
This field may be rendered as one of several different HTML fields, depending on the expanded and
multiple options:

element type expanded multiple

select tag false false

select tag (with multiple attribute) false true

radio buttons true false

checkboxes true true

Field Options

class

type: string required

The class of your entity (e.g. AcmeStoreBundle:Category). This can be a fully-qualified class name (e.g.
Acme\StoreBundle\Entity\Category) or the short alias name (as shown prior).

property

type: string

PDF brought to you by
generated on February 20, 2013

Chapter 19: entity Field Type | 75

http://sensiolabs.com

Listing 19-3

This is the property that should be used for displaying the entities as text in the HTML element. If left
blank, the entity object will be cast into a string and so must have a __toString() method.

group_by

type: string

This is a property path (e.g. author.name) used to organize the available choices in groups. It only works
when rendered as a select tag and does so by adding optgroup tags around options. Choices that do not
return a value for this property path are rendered directly under the select tag, without a surrounding
optgroup.

query_builder

type: Doctrine\ORM\QueryBuilder or a Closure

If specified, this is used to query the subset of options (and their order) that should be used for the field.
The value of this option can either be a QueryBuilder object or a Closure. If using a Closure, it should
take a single argument, which is the EntityRepository of the entity.

em

type: string default: the default entity manager

If specified, the specified entity manager will be used to load the choices instead of the default entity
manager.

Inherited options
These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false, a
select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be moved to the top of the select menu.
The following would move the "Baz" option to the top, with a visual separator between it and the rest of
the options:

1
2

$builder->add('foo_choices', 'choice', array(
'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),

PDF brought to you by
generated on February 20, 2013

Chapter 19: entity Field Type | 76

http://sensiolabs.com

Listing 19-4

Listing 19-5

Listing 19-6

Listing 19-7

3
4

'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select element (i.e. expanded is
false). The preferred choices and normal choices are separated visually by a set of dotted lines (i.e. -----
--------------). This can be customized when rendering the field:

1 {{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

empty_value

type: string or Boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if both the expanded and multiple options are set to
false.

• Add an empty value with "Choose an option" as the text:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => false,

));

If you leave the empty_value option unset, then a blank (with no text) option will automatically be added
if and only if the required option is false:

1
2
3
4

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(

'required' => false,
));

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 19: entity Field Type | 77

http://sensiolabs.com

Listing 19-8

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 19: entity Field Type | 78

http://sensiolabs.com

Listing 20-1

Listing 20-2

Chapter 20

file Field Type

The file type represents a file input in your form.

Rendered as input file field

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling

Parent type form

Class FileType1

Basic Usage
Say you have this form definition:

1 $builder->add('attachment', 'file');

Don't forget to add the enctype attribute in the form tag: <form action="#" method="post" {{
form_enctype(form) }}>.

When the form is submitted, the attachment field will be an instance of UploadedFile2. It can be used
to move the attachment file to a permanent location:

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/FileType.html

2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/File/UploadedFile.html

PDF brought to you by
generated on February 20, 2013

Chapter 20: file Field Type | 79

http://sensiolabs.com

Listing 20-3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

use Symfony\Component\HttpFoundation\File\UploadedFile;

public function uploadAction()
{

// ...

if ($form->isValid()) {
$someNewFilename = ...

$form['attachment']->getData()->move($dir, $someNewFilename);

// ...
}

// ...
}

The move() method takes a directory and a file name as its arguments. You might calculate the filename
in one of the following ways:

1
2
3
4
5
6
7
8
9

10

// use the original file name
$file->move($dir, $file->getClientOriginalName());

// compute a random name and try to guess the extension (more secure)
$extension = $file->guessExtension();
if (!$extension) {

// extension cannot be guessed
$extension = 'bin';

}
$file->move($dir, rand(1, 99999).'.'.$extension);

Using the original name via getClientOriginalName() is not safe as it could have been manipulated by
the end-user. Moreover, it can contain characters that are not allowed in file names. You should sanitize
the name before using it directly.

Read the cookbook for an example of how to manage a file upload associated with a Doctrine entity.

Inherited options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

3. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 20: file Field Type | 80

http://sensiolabs.com

Listing 20-4

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 20: file Field Type | 81

http://sensiolabs.com

Chapter 21

The Abstract "field" Type

The field form type is deprecated as of Symfony 2.1. Please use the Form field type instead.

PDF brought to you by
generated on February 20, 2013

Chapter 21: The Abstract "field" Type | 82

http://sensiolabs.com

Listing 22-1

Chapter 22

form Field Type

See FormType1.

The form type predefines a couple of options that are then available on all fields.

data
type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the corresponding property of the form's
domain object (if an object is bound to the form). If you want to override the initial value for the form or
just an individual field, you can set it in the data option:

1
2
3

$builder->add('token', 'hidden', array(
'data' => 'abcdef',

));

required
type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

constraints
type: array or Constraint3 default: null

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/FormType.html

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 22: form Field Type | 83

http://sensiolabs.com

Allows you to attach one or more validation constraints to a specific field. For more information, see
Adding Validation. This option is added in the FormTypeValidatorExtension4 form extension.

cascade_validation
type: Boolean default: false

Set this option to true to force validation on embedded form types. For example, if you have a
ProductType with an embedded CategoryType, setting cascade_validation to true on ProductType
will cause the data from CategoryType to also be validated.

Instead of using this option, you can also use the Valid constraint in your model to force validation on a
child object stored on a property.

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the `disabled`_ option if you need
the old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

trim
type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim() function when the
data is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed
before the value is merged back onto the underlying object.

mapped
type: boolean

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false

property_path
type: any default: the field's value

Fields display a property value of the form's domain object by default. When the form is submitted, the
submitted value is written back into the object.

If you want to override the property that a field reads from and writes to, you can set the property_path
option. Its default value is the field's name.

3. http://api.symfony.com/master/Symfony/Component/Validator/Constraint.html

4. http://api.symfony.com/master/Symfony/Component/Form/Extension/Validator/Type/FormTypeValidatorExtension.html

PDF brought to you by
generated on February 20, 2013

Chapter 22: form Field Type | 84

http://sensiolabs.com

Listing 22-2

If you wish the field to be ignored when reading or writing to the object you can set the property_path
option to false, but using property_path for this purpose is deprecated, you should do it the way
described below:

New in version 2.1: Since 2.1, the mapped option has been added for this use-case.

attr
type: array default: Empty array

If you want to add extra attributes to HTML field representation you can use attr option. It's an
associative array with HTML attribute as a key. This can be useful when you need to set a custom class
for some widget:

1
2
3

$builder->add('body', 'textarea', array(
'attr' => array('class' => 'tinymce'),

));

translation_domain
type: string default: messages

This is the translation domain that will be used for any labels or options that are rendered for this field.

PDF brought to you by
generated on February 20, 2013

Chapter 22: form Field Type | 85

http://sensiolabs.com

Listing 23-1

Chapter 23

hidden Field Type

The hidden type represents a hidden input field.

Rendered as input hidden field

Inherited
options • data

• property_path

Parent type field

Class HiddenType1

Inherited Options
These options inherit from the field type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the corresponding property of the form's
domain object (if an object is bound to the form). If you want to override the initial value for the form or
just an individual field, you can set it in the data option:

1
2
3

$builder->add('token', 'hidden', array(
'data' => 'abcdef',

));

property_path

type: any default: the field's value

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/HiddenType.html

PDF brought to you by
generated on February 20, 2013

Chapter 23: hidden Field Type | 86

http://sensiolabs.com

Fields display a property value of the form's domain object by default. When the form is submitted, the
submitted value is written back into the object.

If you want to override the property that a field reads from and writes to, you can set the property_path
option. Its default value is the field's name.

If you wish the field to be ignored when reading or writing to the object you can set the property_path
option to false, but using property_path for this purpose is deprecated, you should do it the way
described below:

New in version 2.1: Since 2.1, the mapped option has been added for this use-case.

PDF brought to you by
generated on February 20, 2013

Chapter 23: hidden Field Type | 87

http://sensiolabs.com

Chapter 24

integer Field Type

Renders an input "number" field. Basically, this is a text field that's good at handling data that's in an
integer form. The input number field looks like a text box, except that - if the user's browser supports
HTML5 - it will have some extra frontend functionality.

This field has different options on how to handle input values that aren't integers. By default, all non-
integer values (e.g. 6.78) will round down (e.g. 6).

Rendered as input text field

Options
• rounding_mode
• grouping

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling
• invalid_message
• invalid_message_parameters

Parent type field

Class IntegerType1

Field Options

rounding_mode

type: integer default: IntegerToLocalizedStringTransformer::ROUND_DOWN

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/IntegerType.html

PDF brought to you by
generated on February 20, 2013

Chapter 24: integer Field Type | 88

http://sensiolabs.com

Listing 24-1

By default, if the user enters a non-integer number, it will be rounded down. There are several other
rounding methods, and each is a constant on the IntegerToLocalizedStringTransformer2:

• IntegerToLocalizedStringTransformer::ROUND_DOWN Rounding mode to round towards
zero.

• IntegerToLocalizedStringTransformer::ROUND_FLOOR Rounding mode to round towards
negative infinity.

• IntegerToLocalizedStringTransformer::ROUND_UP Rounding mode to round away from
zero.

• IntegerToLocalizedStringTransformer::ROUND_CEILING Rounding mode to round
towards positive infinity.

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP's
NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true,
numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

Inherited options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

2. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/DataTransformer/IntegerToLocalizedStringTransformer.html

3. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 24: integer Field Type | 89

http://sensiolabs.com

Listing 24-2

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',
'invalid_message_parameters' => array('%num%' => 6),

));

PDF brought to you by
generated on February 20, 2013

Chapter 24: integer Field Type | 90

http://sensiolabs.com

Chapter 25

language Field Type

The language type is a subset of the ChoiceType that allows the user to select from a large list of
languages. As an added bonus, the language names are displayed in the language of the user.

The "value" for each language is the Unicode language identifier (e.g. fr or zh-Hant).

The locale of your user is guessed using Locale::getDefault()1

Unlike the choice type, you don't need to specify a choices or choice_list option as the field type
automatically uses a large list of languages. You can specify either of these options manually, but then
you should just use the choice type directly.

Rendered as can be various tags (see Select tag, Checkboxes or Radio Buttons)

Inherited
options • multiple

• expanded
• preferred_choices
• empty_value
• error_bubbling
• required
• label
• read_only
• disabled

Parent type choice

Class LanguageType2

1. http://php.net/manual/en/locale.getdefault.php

2. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/LanguageType.html

PDF brought to you by
generated on February 20, 2013

Chapter 25: language Field Type | 91

http://sensiolabs.com

Listing 25-1

Listing 25-2

Listing 25-3

Listing 25-4

Inherited Options
These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false, a
select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be moved to the top of the select menu.
The following would move the "Baz" option to the top, with a visual separator between it and the rest of
the options:

1
2
3
4

$builder->add('foo_choices', 'choice', array(
'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
'preferred_choices' => array('baz'),

));

Note that preferred choices are only meaningful when rendering as a select element (i.e. expanded is
false). The preferred choices and normal choices are separated visually by a set of dotted lines (i.e. -----
--------------). This can be customized when rendering the field:

1 {{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

empty_value

type: string or Boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if both the expanded and multiple options are set to
false.

• Add an empty value with "Choose an option" as the text:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

PDF brought to you by
generated on February 20, 2013

Chapter 25: language Field Type | 92

http://sensiolabs.com

Listing 25-5

Listing 25-6

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => false,

));

If you leave the empty_value option unset, then a blank (with no text) option will automatically be added
if and only if the required option is false:

1
2
3
4

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(

'required' => false,
));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

3. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 25: language Field Type | 93

http://sensiolabs.com

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by
generated on February 20, 2013

Chapter 25: language Field Type | 94

http://sensiolabs.com

Chapter 26

locale Field Type

The locale type is a subset of the ChoiceType that allows the user to select from a large list of locales
(language+country). As an added bonus, the locale names are displayed in the language of the user.

The "value" for each locale is either the two letter ISO639-1 language code (e.g. fr), or the language code
followed by an underscore (_), then the ISO3166 country code (e.g. fr_FR for French/France).

The locale of your user is guessed using Locale::getDefault()1

Unlike the choice type, you don't need to specify a choices or choice_list option as the field type
automatically uses a large list of locales. You can specify either of these options manually, but then you
should just use the choice type directly.

Rendered as can be various tags (see Select tag, Checkboxes or Radio Buttons)

Inherited
options • multiple

• expanded
• preferred_choices
• empty_value
• error_bubbling
• required
• label
• read_only
• disabled

Parent type choice

Class LanguageType2

1. http://php.net/manual/en/locale.getdefault.php

2. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/LanguageType.html

PDF brought to you by
generated on February 20, 2013

Chapter 26: locale Field Type | 95

http://sensiolabs.com

Listing 26-1

Listing 26-2

Listing 26-3

Listing 26-4

Inherited options
These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false, a
select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be moved to the top of the select menu.
The following would move the "Baz" option to the top, with a visual separator between it and the rest of
the options:

1
2
3
4

$builder->add('foo_choices', 'choice', array(
'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
'preferred_choices' => array('baz'),

));

Note that preferred choices are only meaningful when rendering as a select element (i.e. expanded is
false). The preferred choices and normal choices are separated visually by a set of dotted lines (i.e. -----
--------------). This can be customized when rendering the field:

1 {{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

empty_value

type: string or Boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if both the expanded and multiple options are set to
false.

• Add an empty value with "Choose an option" as the text:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

PDF brought to you by
generated on February 20, 2013

Chapter 26: locale Field Type | 96

http://sensiolabs.com

Listing 26-5

Listing 26-6

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => false,

));

If you leave the empty_value option unset, then a blank (with no text) option will automatically be added
if and only if the required option is false:

1
2
3
4

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(

'required' => false,
));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

3. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 26: locale Field Type | 97

http://sensiolabs.com

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by
generated on February 20, 2013

Chapter 26: locale Field Type | 98

http://sensiolabs.com

Chapter 27

money Field Type

Renders an input text field and specializes in handling submitted "money" data.

This field type allows you to specify a currency, whose symbol is rendered next to the text field. There
are also several other options for customizing how the input and output of the data is handled.

Rendered as input text field

Options
• currency
• divisor
• precision
• grouping

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling
• invalid_message
• invalid_message_parameters

Parent type field

Class MoneyType1

Field Options

currency

type: string default: EUR

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/MoneyType.html

PDF brought to you by
generated on February 20, 2013

Chapter 27: money Field Type | 99

http://sensiolabs.com

Listing 27-1

Specifies the currency that the money is being specified in. This determines the currency symbol that
should be shown by the text box. Depending on the currency - the currency symbol may be shown before
or after the input text field.

This can also be set to false to hide the currency symbol.

divisor

type: integer default: 1

If, for some reason, you need to divide your starting value by a number before rendering it to the user,
you can use the divisor option. For example:

1
2
3

$builder->add('price', 'money', array(
'divisor' => 100,

));

In this case, if the price field is set to 9900, then the value 99 will actually be rendered to the user. When
the user submits the value 99, it will be multiplied by 100 and 9900 will ultimately be set back on your
object.

precision

type: integer default: 2

For some reason, if you need some precision other than 2 decimal places, you can modify this value.
You probably won't need to do this unless, for example, you want to round to the nearest dollar (set the
precision to 0).

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP's
NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true,
numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

Inherited Options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 27: money Field Type | 100

http://sensiolabs.com

Listing 27-2

Listing 27-3

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2

$builder->add('some_field', 'some_type', array(
// ...

PDF brought to you by
generated on February 20, 2013

Chapter 27: money Field Type | 101

http://sensiolabs.com

3
4
5

'invalid_message' => 'You entered an invalid value - it should include %num%
letters',

'invalid_message_parameters' => array('%num%' => 6),
));

PDF brought to you by
generated on February 20, 2013

Chapter 27: money Field Type | 102

http://sensiolabs.com

Chapter 28

number Field Type

Renders an input text field and specializes in handling number input. This type offers different options
for the precision, rounding, and grouping that you want to use for your number.

Rendered as input text field

Options
• rounding_mode
• precision
• grouping

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling
• invalid_message
• invalid_message_parameters

Parent type field

Class NumberType1

Field Options

precision

type: integer default: Locale-specific (usually around 3)

This specifies how many decimals will be allowed until the field rounds the submitted value (via
rounding_mode). For example, if precision is set to 2, a submitted value of 20.123 will be rounded to,
for example, 20.12 (depending on your rounding_mode).

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/NumberType.html

PDF brought to you by
generated on February 20, 2013

Chapter 28: number Field Type | 103

http://sensiolabs.com

rounding_mode

type: integer default: IntegerToLocalizedStringTransformer::ROUND_HALFUP

If a submitted number needs to be rounded (based on the precision option), you have several
configurable options for that rounding. Each option is a constant on the
IntegerToLocalizedStringTransformer2:

• IntegerToLocalizedStringTransformer::ROUND_DOWN Rounding mode to round towards
zero.

• IntegerToLocalizedStringTransformer::ROUND_FLOOR Rounding mode to round towards
negative infinity.

• IntegerToLocalizedStringTransformer::ROUND_UP Rounding mode to round away from
zero.

• IntegerToLocalizedStringTransformer::ROUND_CEILING Rounding mode to round
towards positive infinity.

• IntegerToLocalizedStringTransformer::ROUND_HALFDOWN Rounding mode to round
towards "nearest neighbor" unless both neighbors are equidistant, in which case round down.

• IntegerToLocalizedStringTransformer::ROUND_HALFEVEN Rounding mode to round
towards the "nearest neighbor" unless both neighbors are equidistant, in which case, round
towards the even neighbor.

• IntegerToLocalizedStringTransformer::ROUND_HALFUP Rounding mode to round towards
"nearest neighbor" unless both neighbors are equidistant, in which case round up.

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP's
NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true,
numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

Inherited Options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

2. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/DataTransformer/IntegerToLocalizedStringTransformer.html

3. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 28: number Field Type | 104

http://sensiolabs.com

Listing 28-1

Listing 28-2

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',

PDF brought to you by
generated on February 20, 2013

Chapter 28: number Field Type | 105

http://sensiolabs.com

4
5

'invalid_message_parameters' => array('%num%' => 6),
));

PDF brought to you by
generated on February 20, 2013

Chapter 28: number Field Type | 106

http://sensiolabs.com

Chapter 29

password Field Type

The password field renders an input password text box.

Rendered as input password field

Options
• always_empty

Inherited
options • max_length

• required
• label
• trim
• read_only
• disabled
• error_bubbling

Parent type text

Class PasswordType1

Field Options

always_empty

type: Boolean default: true

If set to true, the field will always render blank, even if the corresponding field has a value. When set to
false, the password field will be rendered with the value attribute set to its true value.

Put simply, if for some reason you want to render your password field with the password value already
entered into the box, set this to false.

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/PasswordType.html

PDF brought to you by
generated on February 20, 2013

Chapter 29: password Field Type | 107

http://sensiolabs.com

Listing 29-1

Inherited Options
These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by some browsers to limit the amount
of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim() function when the
data is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed
before the value is merged back onto the underlying object.

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 29: password Field Type | 108

http://sensiolabs.com

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 29: password Field Type | 109

http://sensiolabs.com

Chapter 30

percent Field Type

The percent type renders an input text field and specializes in handling percentage data. If your
percentage data is stored as a decimal (e.g. .95), you can use this field out-of-the-box. If you store your
data as a number (e.g. 95), you should set the type option to integer.

This field adds a percentage sign "%" after the input box.

Rendered as input text field

Options
• type
• precision

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling
• invalid_message
• invalid_message_parameters

Parent type field

Class PercentType1

Options

type

type: string default: fractional

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/PercentType.html

PDF brought to you by
generated on February 20, 2013

Chapter 30: percent Field Type | 110

http://sensiolabs.com

Listing 30-1

This controls how your data is stored on your object. For example, a percentage corresponding to "55%",
might be stored as .55 or 55 on your object. The two "types" handle these two cases:

• fractional If your data is stored as a decimal (e.g. .55), use this type. The data will be
multiplied by 100 before being shown to the user (e.g. 55). The submitted data will be divided
by 100 on form submit so that the decimal value is stored (.55);

• integer If your data is stored as an integer (e.g. 55), then use this option. The raw value (55)
is shown to the user and stored on your object. Note that this only works for integer values.

precision

type: integer default: 0

By default, the input numbers are rounded. To allow for more decimal places, use this option.

Inherited Options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 30: percent Field Type | 111

http://sensiolabs.com

Listing 30-2

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',
'invalid_message_parameters' => array('%num%' => 6),

));

PDF brought to you by
generated on February 20, 2013

Chapter 30: percent Field Type | 112

http://sensiolabs.com

Chapter 31

radio Field Type

Creates a single radio button. If the radio button is selected, the field will be set to the specified value.
Radio buttons cannot be unchecked - the value only changes when another radio button with the same
name gets checked.

The radio type isn't usually used directly. More commonly it's used internally by other types such as
choice. If you want to have a Boolean field, use checkbox.

Rendered as input radio field

Options
• value

Inherited
options • required

• label
• read_only
• disabled
• error_bubbling

Parent type field

Class RadioType1

Field Options

value

type: mixed default: 1

The value that's actually used as the value for the radio button. This does not affect the value that's set
on your object.

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/RadioType.html

PDF brought to you by
generated on February 20, 2013

Chapter 31: radio Field Type | 113

http://sensiolabs.com

Listing 31-1

Inherited Options
These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 31: radio Field Type | 114

http://sensiolabs.com

Listing 32-1

Chapter 32

repeated Field Type

This is a special field "group", that creates two identical fields whose values must match (or a validation
error is thrown). The most common use is when you need the user to repeat his or her password or email
to verify accuracy.

Rendered as input text field by default, but see type option

Options
• type
• options
• first_options
• second_options
• first_name
• second_name

Inherited
options • invalid_message

• invalid_message_parameters
• error_bubbling

Parent type field

Class RepeatedType1

Example Usage

1
2
3
4
5

$builder->add('password', 'repeated', array(
'type' => 'password',
'invalid_message' => 'The password fields must match.',
'options' => array('attr' => array('class' => 'password-field')),
'required' => true,

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/RepeatedType.html

PDF brought to you by
generated on February 20, 2013

Chapter 32: repeated Field Type | 115

http://sensiolabs.com

Listing 32-2

Listing 32-3

6
7
8

'first_options' => array('label' => 'Password'),
'second_options' => array('label' => 'Repeat Password'),

));

Upon a successful form submit, the value entered into both of the "password" fields becomes the data of
the password key. In other words, even though two fields are actually rendered, the end data from the
form is just the single value (usually a string) that you need.

The most important option is type, which can be any field type and determines the actual type of the
two underlying fields. The options option is passed to each of those individual fields, meaning - in this
example - any option supported by the password type can be passed in this array.

Rendering

The repeated field type is actually two underlying fields, which you can render all at once, or individually.
To render all at once, use something like:

1 {{ form_row(form.password) }}

To render each field individually, use something like this:

1
2

{{ form_row(form.password.first) }}
{{ form_row(form.password.second) }}

The sub-field names are first and second by default, but can be controlled via the first_name and
second_name options.

Validation

One of the key features of the repeated field is internal validation (you don't need to do anything to set
this up) that forces the two fields to have a matching value. If the two fields don't match, an error will be
shown to the user.

The invalid_message is used to customize the error that will be displayed when the two fields do not
match each other.

Field Options

type

type: string default: text

The two underlying fields will be of this field type. For example, passing a type of password will render
two password fields.

options

type: array default: array()

This options array will be passed to each of the two underlying fields. In other words, these are the
options that customize the individual field types. For example, if the type option is set to password, this

PDF brought to you by
generated on February 20, 2013

Chapter 32: repeated Field Type | 116

http://sensiolabs.com

Listing 32-4

array might contain the options always_empty or required - both options that are supported by the
password field type.

first_options

type: array default: array()

New in version 2.1: The first_options option is new in Symfony 2.1.

Additional options (will be merged into options above) that should be passed only to the first field. This
is especially useful for customizing the label:

1
2
3
4

$builder->add('password', 'repeated', array(
'first_options' => array('label' => 'Password'),
'second_options' => array('label' => 'Repeat Password'),

));

second_options

type: array default: array()

New in version 2.1: The second_options option is new in Symfony 2.1.

Additional options (will be merged into options above) that should be passed only to the second field.
This is especially useful for customizing the label (see first_options).

first_name

type: string default: first

This is the actual field name to be used for the first field. This is mostly meaningless, however, as the
actual data entered into both of the fields will be available under the key assigned to the repeated field
itself (e.g. password). However, if you don't specify a label, this field name is used to "guess" the label for
you.

second_name

type: string default: second

The same as first_name, but for the second field.

Inherited options
These options inherit from the field type:

invalid_message

type: string default: This value is not valid

PDF brought to you by
generated on February 20, 2013

Chapter 32: repeated Field Type | 117

http://sensiolabs.com

Listing 32-5

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',
'invalid_message_parameters' => array('%num%' => 6),

));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 32: repeated Field Type | 118

http://sensiolabs.com

Chapter 33

search Field Type

This renders an <input type="search" /> field, which is a text box with special functionality supported
by some browsers.

Read about the input search field at DiveIntoHTML5.info1

Rendered as input search field

Inherited
options • max_length

• required
• label
• trim
• read_only
• disabled
• error_bubbling

Parent type text

Class SearchType2

Inherited Options
These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by some browsers to limit the amount
of text in a field.

1. http://diveintohtml5.info/forms.html#type-search

2. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/SearchType.html

PDF brought to you by
generated on February 20, 2013

Chapter 33: search Field Type | 119

http://sensiolabs.com

Listing 33-1

required

type: Boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim() function when the
data is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed
before the value is merged back onto the underlying object.

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

3. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 33: search Field Type | 120

http://sensiolabs.com

Chapter 34

text Field Type

The text field represents the most basic input text field.

Rendered as input text field

Inherited
options • max_length

• required
• label
• trim
• read_only
• disabled
• error_bubbling

Parent type field

Class TextType1

Inherited Options
These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by some browsers to limit the amount
of text in a field.

required

type: Boolean default: true

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TextType.html

PDF brought to you by
generated on February 20, 2013

Chapter 34: text Field Type | 121

http://sensiolabs.com

Listing 34-1

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim() function when the
data is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed
before the value is merged back onto the underlying object.

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 34: text Field Type | 122

http://sensiolabs.com

Chapter 35

textarea Field Type

Renders a textarea HTML element.

Rendered as textarea tag

Inherited
options • max_length

• required
• label
• trim
• read_only
• disabled
• error_bubbling

Parent type field

Class TextareaType1

Inherited Options
These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by some browsers to limit the amount
of text in a field.

required

type: Boolean default: true

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TextareaType.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: textarea Field Type | 123

http://sensiolabs.com

Listing 35-1

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim() function when the
data is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed
before the value is merged back onto the underlying object.

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: textarea Field Type | 124

http://sensiolabs.com

Chapter 36

time Field Type

A field to capture time input.

This can be rendered as a text field, a series of text fields (e.g. hour, minute, second) or a series of select
fields. The underlying data can be stored as a DateTime object, a string, a timestamp or an array.

Underlying Data
Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as can be various tags (see below)

Options
• widget
• input
• with_seconds
• hours
• minutes
• seconds
• data_timezone
• user_timezone

Inherited options
• invalid_message
• invalid_message_parameters
• read_only
• disabled

Parent type form

Class TimeType1

Basic Usage
This field type is highly configurable, but easy to use. The most important options are input and widget.

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TimeType.html

PDF brought to you by
generated on February 20, 2013

Chapter 36: time Field Type | 125

http://sensiolabs.com

Listing 36-1

Listing 36-2

Suppose that you have a startTime field whose underlying time data is a DateTime object. The following
configures the time type for that field as three different choice fields:

1
2
3
4

$builder->add('startTime', 'time', array(
'input' => 'datetime',
'widget' => 'choice',

));

The input option must be changed to match the type of the underlying date data. For example, if the
startTime field's data were a unix timestamp, you'd need to set input to timestamp:

1
2
3
4

$builder->add('startTime', 'time', array(
'input' => 'timestamp',
'widget' => 'choice',

));

The field also supports an array and string as valid input option values.

Field Options

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders two (or three if with_seconds is true) select inputs.
• text: renders a two or three text inputs (hour, minute, second).
• single_text: renders a single input of type text. User's input will be validated against the form

hh:mm (or hh:mm:ss if using seconds).

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 12:17:26)
• datetime (a DateTime object)
• array (e.g. array('hour' => 12, 'minute' => 17, 'second' => 26))
• timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into this format.

with_seconds

type: Boolean default: false

Whether or not to include seconds in the input. This will result in an additional input to capture seconds.

hours

type: integer default: 0 to 23

PDF brought to you by
generated on February 20, 2013

Chapter 36: time Field Type | 126

http://sensiolabs.com

Listing 36-3

List of hours available to the hours field type. This option is only relevant when the widget option is set
to choice.

minutes

type: integer default: 0 to 59

List of minutes available to the minutes field type. This option is only relevant when the widget option
is set to choice.

seconds

type: integer default: 0 to 59

List of seconds available to the seconds field type. This option is only relevant when the widget option is
set to choice.

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones2

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones3

Inherited options
These options inherit from the field type:

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a time field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

2. http://php.net/manual/en/timezones.php

3. http://php.net/manual/en/timezones.php

PDF brought to you by
generated on February 20, 2013

Chapter 36: time Field Type | 127

http://sensiolabs.com

1
2
3
4
5

$builder->add('some_field', 'some_type', array(
// ...
'invalid_message' => 'You entered an invalid value - it should include %num%

letters',
'invalid_message_parameters' => array('%num%' => 6),

));

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by
generated on February 20, 2013

Chapter 36: time Field Type | 128

http://sensiolabs.com

Chapter 37

timezone Field Type

The timezone type is a subset of the ChoiceType that allows the user to select from all possible
timezones.

The "value" for each timezone is the full timezone name, such as America/Chicago or Europe/Istanbul.

Unlike the choice type, you don't need to specify a choices or choice_list option as the field type
automatically uses a large list of locales. You can specify either of these options manually, but then you
should just use the choice type directly.

Rendered as can be various tags (see Select tag, Checkboxes or Radio Buttons)

Inherited
options • multiple

• expanded
• preferred_choices
• empty_value
• required
• label
• read_only
• disabled
• error_bubbling

Parent type choice

Class TimezoneType1

Inherited options
These options inherit from the choice type:

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TimezoneType.html

PDF brought to you by
generated on February 20, 2013

Chapter 37: timezone Field Type | 129

http://sensiolabs.com

Listing 37-1

Listing 37-2

Listing 37-3

Listing 37-4

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false, a
select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be moved to the top of the select menu.
The following would move the "Baz" option to the top, with a visual separator between it and the rest of
the options:

1
2
3
4

$builder->add('foo_choices', 'choice', array(
'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
'preferred_choices' => array('baz'),

));

Note that preferred choices are only meaningful when rendering as a select element (i.e. expanded is
false). The preferred choices and normal choices are separated visually by a set of dotted lines (i.e. -----
--------------). This can be customized when rendering the field:

1 {{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

empty_value

type: string or Boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if both the expanded and multiple options are set to
false.

• Add an empty value with "Choose an option" as the text:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

1
2
3

$builder->add('states', 'choice', array(
'empty_value' => false,

));

If you leave the empty_value option unset, then a blank (with no text) option will automatically be added
if and only if the required option is false:

PDF brought to you by
generated on February 20, 2013

Chapter 37: timezone Field Type | 130

http://sensiolabs.com

Listing 37-5

Listing 37-6

1
2
3
4

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(

'required' => false,
));

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 37: timezone Field Type | 131

http://sensiolabs.com

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 37: timezone Field Type | 132

http://sensiolabs.com

Chapter 38

url Field Type

The url field is a text field that prepends the submitted value with a given protocol (e.g. http://) if the
submitted value doesn't already have a protocol.

Rendered as input url field

Options
• default_protocol

Inherited
options • max_length

• required
• label
• trim
• read_only
• disabled
• error_bubbling

Parent type text

Class UrlType1

Field Options

default_protocol

type: string default: http

If a value is submitted that doesn't begin with some protocol (e.g. http://, ftp://, etc), this protocol
will be prepended to the string when the data is bound to the form.

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/UrlType.html

PDF brought to you by
generated on February 20, 2013

Chapter 38: url Field Type | 133

http://sensiolabs.com

Listing 38-1

Inherited Options
These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by some browsers to limit the amount
of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. The label can also be directly set inside the
template:

1 {{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim() function when the
data is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed
before the value is merged back onto the underlying object.

read_only

New in version 2.1: The read_only option was changed in 2.1 to render as a readonly HTML
attribute. Previously, it rendered as a disabled attribute. Use the disabled option if you need the
old behavior.

type: Boolean default: false

If this option is true, the field will be rendered with the readonly attribute so that the field is not editable.

2. http://diveintohtml5.info/forms.html

PDF brought to you by
generated on February 20, 2013

Chapter 38: url Field Type | 134

http://sensiolabs.com

disabled

New in version 2.1: The disabled option is new in version 2.1

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on a
normal field, any errors for that field will be attached to the main form, not to the specific field.

PDF brought to you by
generated on February 20, 2013

Chapter 38: url Field Type | 135

http://sensiolabs.com

Listing 39-1

Listing 39-2

Chapter 39

Twig Template Form Function Reference

This reference manual covers all the possible Twig functions available for rendering forms. There are
several different functions available, and each is responsible for rendering a different part of a form (e.g.
labels, errors, widgets, etc).

form_label(view, label, variables)
Renders the label for the given field. You can optionally pass the specific label you want to display as the
second argument.

1
2
3
4
5

{{ form_label(form.name) }}

{# The two following syntaxes are equivalent #}
{{ form_label(form.name, 'Your Name', {'label_attr': {'class': 'foo'}}) }}
{{ form_label(form.name, null, {'label': 'Your name', 'label_attr': {'class': 'foo'}}) }}

See "More about Form "Variables"" to learn about the variables argument.

form_errors(view)
Renders any errors for the given field.

1
2
3
4

{{ form_errors(form.name) }}

{# render any "global" errors #}
{{ form_errors(form) }}

PDF brought to you by
generated on February 20, 2013

Chapter 39: Twig Template Form Function Reference | 136

http://sensiolabs.com

Listing 39-3

Listing 39-4

Listing 39-5

Listing 39-6

form_widget(view, variables)
Renders the HTML widget of a given field. If you apply this to an entire form or collection of fields, each
underlying form row will be rendered.

1
2

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, {'attr': {'class': 'foo'}}) }}

The second argument to form_widget is an array of variables. The most common variable is attr,
which is an array of HTML attributes to apply to the HTML widget. In some cases, certain types also
have other template-related options that can be passed. These are discussed on a type-by-type basis.
The attributes are not applied recursively to child fields if you're rendering many fields at once (e.g.
form_widget(form)).

See "More about Form "Variables"" to learn more about the variables argument.

form_row(view, variables)
Renders the "row" of a given field, which is the combination of the field's label, errors and widget.

1
2

{# render a field row, but display a label with text "foo" #}
{{ form_row(form.name, {'label': 'foo'}) }}

The second argument to form_row is an array of variables. The templates provided in Symfony only allow
to override the label as shown in the example above.

See "More about Form "Variables"" to learn about the variables argument.

form_rest(view, variables)
This renders all fields that have not yet been rendered for the given form. It's a good idea to always have
this somewhere inside your form as it'll render hidden fields for you and make any fields you forgot to
render more obvious (since it'll render the field for you).

1 {{ form_rest(form) }}

form_enctype(view)
If the form contains at least one file upload field, this will render the required enctype="multipart/
form-data" form attribute. It's always a good idea to include this in your form tag:

1 <form action="{{ path('form_submit') }}" method="post" {{ form_enctype(form) }}>

More about Form "Variables"
In almost every Twig function above, the final argument is an array of "variables" that are used when
rendering that one part of the form. For example, the following would render the "widget" for a field, and
modify its attributes to include a special class:

PDF brought to you by
generated on February 20, 2013

Chapter 39: Twig Template Form Function Reference | 137

http://sensiolabs.com

Listing 39-7

Listing 39-8

Listing 39-9

1
2

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, { 'attr': {'class': 'foo'} }) }}

The purpose of these variables - what they do & where they come from - may not be immediately clear,
but they're incredibly powerful. Whenever you render any part of a form, the block that renders it makes
use of a number of variables. By default, these blocks live inside form_div_layout.html.twig1.

Look at the form_label as an example:

1
2
3
4
5
6
7
8
9

10
11
12

{% block form_label %}
{% if not compound %}

{% set label_attr = label_attr|merge({'for': id}) %}
{% endif %}
{% if required %}

{% set label_attr = label_attr|merge({'class': (label_attr.class|default('') ~ '
required')|trim}) %}

{% endif %}
{% if label is empty %}

{% set label = name|humanize %}
{% endif %}
<label{% for attrname, attrvalue in label_attr %} {{ attrname }}="{{ attrvalue }}"{%

endfor %}>{{ label|trans({}, translation_domain) }}</label>
{% endblock form_label %}

This block makes use of several variables: compound, label_attr, required, label, name and
translation_domain. These variables are made available by the form rendering system. But more
importantly, these are the variables that you can override when calling form_label (since in this example,
you're rendering the label).

The exact variables available to override depends on which part of the form you're rendering (e.g. label
versus widget) and which field you're rendering (e.g. a choice widget has an extra expanded option). If
you get comfortable with looking through form_div_layout.html.twig2, you'll always be able to see what
options you have available.

Behind the scenes, these variables are made available to the FormView object of your form when
the form component calls buildView and buildViewBottomUp on each "node" of your form tree.
To see what "view" variables a particularly field has, find the source code for the form field (and its
parent fields) and look at the above two functions.

If you're rendering an entire form at once (or an entire embedded form), the variables argument
will only be applied to the form itself and not its children. In other words, the following will not
pass a "foo" class attribute to all of the child fields in the form:

1
2

{# does **not** work - the variables are not recursive #}
{{ form_widget(form, { 'attr': {'class': 'foo'} }) }}

1. https://github.com/symfony/symfony/blob/2.1/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

2. https://github.com/symfony/symfony/blob/2.1/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

PDF brought to you by
generated on February 20, 2013

Chapter 39: Twig Template Form Function Reference | 138

http://sensiolabs.com

Chapter 40

Symfony2 Twig Extensions

Twig is the default template engine for Symfony2. By itself, it already contains a lot of build-in functions,
filters, tags and tests (http://twig.sensiolabs.org/documentation1 then scroll to the bottom).

Symfony2 adds more custom extension on top of Twig to integrate some components into the Twig
templates. Below is information about all the custom functions, filters, tags and tests that are added when
using the Symfony2 Core Framework.

There may also be tags in bundles you use that aren't listed here.

Functions

New in version 2.1: The csrf_token, logout_path and logout_url functions were added in
Symfony2.1

New in version 2.3: The render and controller functions are new in Symfony 2.2. Prior, the {%
render %} tag was used and had a different signature.

Function Syntax Usage

render(uri, options = {})
render(controller('B:C:a',
{params})) render(path('route',
{params})) render(url('route',
{params}))

This will render the fragment for the given controller or
URL For more information, see Embedding Controllers.

render_esi(controller('B:C:a',
{params}))
render_esi(url('route',

This will generates an ESI tag when possible or fallback to
the render behavior otherwise. For more information, see
Embedding Controllers.

1. http://twig.sensiolabs.org/documentation

PDF brought to you by
generated on February 20, 2013

Chapter 40: Symfony2 Twig Extensions | 139

http://sensiolabs.com

Function Syntax Usage

{params}))
render_esi(path('route',
{params}))

render_hinclude(controller(...))
render_hinclude(url('route',
{params}))
render_hinclude(path('route',
{params}))

This will generates an Hinclude tag for the given controller
or URL. For more information, see Embedding Controllers.

controller(attributes = {},
query = {})

Used along with the render tag to refer to the controller
that you want to render.

asset(path, packageName = null) Get the public path of the asset, more information in
"Linking to Assets".

asset_version(packageName =
null)

Get the current version of the package, more information in
"Linking to Assets".

form_enctype(view) This will render the required enctype="multipart/form-
data" attribute if the form contains at least one file upload
field, more information in in the Twig Form reference.

form_widget(view, variables =
{})

This will render a complete form or a specific HTML widget
of a field, more information in the Twig Form reference.

form_errors(view) This will render any errors for the given field or the "global"
errors, more information in the Twig Form reference.

form_label(view, label = null,
variables = {})

This will render the label for the given field, more
information in the Twig Form reference.

form_row(view, variables = {}) This will render the row (the field's label, errors and widget)
of the given field, more information in the Twig Form
reference.

form_rest(view, variables = {}) This will render all fields that have not yet been rendered,
more information in the Twig Form reference.

csrf_token(intention) This will render a CSRF token. Use this function if you want
CSRF protection without creating a form

is_granted(role, object = null,
field = null)

This will return true if the current user has the required
role, more information in "Access Control in Templates"

logout_path(key) This will generate the relative logout URL for the given
firewall

logout_url(key) Equal to logout_path(...) but this will generate an
absolute url

path(name, parameters = {}) Get a relative url for the given route, more information in
"Linking to Pages".

url(name, parameters = {}) Equal to path(...) but it generates an absolute url

PDF brought to you by
generated on February 20, 2013

Chapter 40: Symfony2 Twig Extensions | 140

http://sensiolabs.com

Filters

New in version 2.1: The humanize filter was added in Symfony2.1

Filter Syntax Usage

text|humanize Makes a technical name human readable (replaces underscores
by spaces and capitalizes the string)

text|trans(arguments = {}, domain =
'messages', locale = null)

This will translate the text into the current language, more
information in Twig Templates.

text|transchoice(count, arguments =
{}, domain = 'messages', locale =
null)

This will translate the text with pluralization, more information
in Twig Templates.

variable|yaml_encode(inline = 0) This will transform the variable text into a YAML syntax.

variable|yaml_dump This will render a yaml syntax with their type.

classname|abbr_class This will render an abbr element with the short name of a PHP
class.

methodname|abbr_method This will render a PHP method inside a abbr element (e.g.
Symfony\Component\HttpFoundation\Response::getContent

arguments|format_args This will render a string with the arguments of a function and
their types.

arguments|format_args_as_text Equal to [...]|format_args, but it strips the tags.

path|file_excerpt(line) This will render an excerpt of a code file around the given line.

path|format_file(line, text = null) This will render a file path in a link.

exceptionMessage|format_file_from_text Equal to format_file except it parsed the default PHP error
string into a file path (i.e. 'in foo.php on line 45')

path|file_link(line) This will render a path to the correct file (and line number)

Tags

Tag Syntax Usage

{% form_theme form 'file' %} This will look inside the given file for overridden form
blocks, more information in How to customize Form
Rendering.

{% trans with {variables} %}...{%
endtrans %}

This will translate and render the text, more information
in Twig Templates

{% transchoice count with
{variables} %} ... {% endtranschoice
%}

This will translate and render the text with pluralization,
more information in Twig Templates

PDF brought to you by
generated on February 20, 2013

Chapter 40: Symfony2 Twig Extensions | 141

http://sensiolabs.com

Tests

New in version 2.1: The selectedchoice test was added in Symfony2.1

Test Syntax Usage

selectedchoice(choice,
selectedValue)

This will return true if the choice is selected for the given
form value

Global Variables

Variable Usage

app Attributes: app.user,
app.request app.session,
app.environment, app.debug
app.security

The app variable is available everywhere, and gives you
quick access to many commonly needed objects. The app
variable is instance of GlobalVariables2

Symfony Standard Edition Extensions
The Symfony Standard Edition adds some bundles to the Symfony2 Core Framework. Those bundles can
have other Twig extensions:

• Twig Extension includes all extensions that do not belong to the Twig core but can be
interesting. You can read more in the official Twig Extensions documentation3

• Assetic adds the {% stylesheets %}, {% javascripts %} and {% image %} tags. You can
read more about them in the Assetic Documentation;

2. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Templating/GlobalVariables.html

3. http://twig.sensiolabs.org/doc/extensions/index.html

PDF brought to you by
generated on February 20, 2013

Chapter 40: Symfony2 Twig Extensions | 142

http://sensiolabs.com

Chapter 41

Validation Constraints Reference

The Validator is designed to validate objects against constraints. In real life, a constraint could be: "The
cake must not be burned". In Symfony2, constraints are similar: They are assertions that a condition is
true.

Supported Constraints
The following constraints are natively available in Symfony2:

Basic Constraints

These are the basic constraints: use them to assert very basic things about the value of properties or the
return value of methods on your object.

• NotBlank
• Blank
• NotNull
• Null
• True
• False
• Type

String Constraints

• Email
• MinLength
• MaxLength
• Length
• Url
• Regex
• Ip

PDF brought to you by
generated on February 20, 2013

Chapter 41: Validation Constraints Reference | 143

http://sensiolabs.com

Number Constraints

• Max
• Min
• Range

Date Constraints

• Date
• DateTime
• Time

Collection Constraints

• Choice
• Collection
• Count
• UniqueEntity
• Language
• Locale
• Country

File Constraints

• File
• Image

Financial Constraints

• CardScheme
• Luhn

Other Constraints

• Callback
• All
• UserPassword
• Valid

PDF brought to you by
generated on February 20, 2013

Chapter 41: Validation Constraints Reference | 144

http://sensiolabs.com

Listing 42-1

Chapter 42

NotBlank

Validates that a value is not blank, defined as not equal to a blank string and also not equal to null. To
force that a value is simply not equal to null, see the NotNull constraint.

Applies to property or method

Options
• message

Class NotBlank1

Validator NotBlankValidator2

Basic Usage
If you wanted to ensure that the firstName property of an Author class were not blank, you could do the
following:

1
2
3
4
5

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
firstName:

- NotBlank: ~

Options

message

type: string default: This value should not be blank

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotBlank.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotBlankValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 42: NotBlank | 145

http://sensiolabs.com

This is the message that will be shown if the value is blank.

PDF brought to you by
generated on February 20, 2013

Chapter 42: NotBlank | 146

http://sensiolabs.com

Listing 43-1

Chapter 43

Blank

Validates that a value is blank, defined as equal to a blank string or equal to null. To force that a value
strictly be equal to null, see the Null constraint. To force that a value is not blank, see NotBlank.

Applies to property or method

Options
• message

Class Blank1

Validator BlankValidator2

Basic Usage
If, for some reason, you wanted to ensure that the firstName property of an Author class were blank,
you could do the following:

1
2
3
4
5

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
firstName:

- Blank: ~

Options

message

type: string default: This value should be blank

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Blank.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/BlankValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 43: Blank | 147

http://sensiolabs.com

This is the message that will be shown if the value is not blank.

PDF brought to you by
generated on February 20, 2013

Chapter 43: Blank | 148

http://sensiolabs.com

Listing 44-1

Chapter 44

NotNull

Validates that a value is not strictly equal to null. To ensure that a value is simply not blank (not a blank
string), see the NotBlank constraint.

Applies to property or method

Options
• message

Class NotNull1

Validator NotNullValidator2

Basic Usage
If you wanted to ensure that the firstName property of an Author class were not strictly equal to null,
you would:

1
2
3
4
5

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
firstName:

- NotNull: ~

Options

message

type: string default: This value should not be null

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotNull.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotNullValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 44: NotNull | 149

http://sensiolabs.com

This is the message that will be shown if the value is null.

PDF brought to you by
generated on February 20, 2013

Chapter 44: NotNull | 150

http://sensiolabs.com

Listing 45-1

Chapter 45

Null

Validates that a value is exactly equal to null. To force that a property is simply blank (blank string or
null), see the Blank constraint. To ensure that a property is not null, see NotNull.

Applies to property or method

Options
• message

Class Null1

Validator NullValidator2

Basic Usage
If, for some reason, you wanted to ensure that the firstName property of an Author class exactly equal
to null, you could do the following:

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
firstName:

- 'Null': ~

Options

message

type: string default: This value should be null

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Null.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NullValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 45: Null | 151

http://sensiolabs.com

This is the message that will be shown if the value is not null.

PDF brought to you by
generated on February 20, 2013

Chapter 45: Null | 152

http://sensiolabs.com

Listing 46-1

Chapter 46

True

Validates that a value is true. Specifically, this checks to see if the value is exactly true, exactly the
integer 1, or exactly the string "1".

Also see False.

Applies to property or method

Options
• message

Class True1

Validator TrueValidator2

Basic Usage
This constraint can be applied to properties (e.g. a termsAccepted property on a registration model) or
to a "getter" method. It's most powerful in the latter case, where you can assert that a method returns a
true value. For example, suppose you have the following method:

1
2
3
4
5
6
7
8
9

10

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{

protected $token;

public function isTokenValid()
{

return $this->token == $this->generateToken();

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/True.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/TrueValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 46: True | 153

http://sensiolabs.com

Listing 46-2

11
12

}
}

Then you can constrain this method with True.

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

getters:
tokenValid:

- "True": { message: "The token is invalid" }

If the isTokenValid() returns false, the validation will fail.

Options

message

type: string default: This value should be true

This message is shown if the underlying data is not true.

PDF brought to you by
generated on February 20, 2013

Chapter 46: True | 154

http://sensiolabs.com

Listing 47-1

Listing 47-2

Chapter 47

False

Validates that a value is false. Specifically, this checks to see if the value is exactly false, exactly the
integer 0, or exactly the string "0".

Also see True.

Applies to property or method

Options
• message

Class False1

Validator FalseValidator2

Basic Usage
The False constraint can be applied to a property or a "getter" method, but is most commonly useful in
the latter case. For example, suppose that you want to guarantee that some state property is not in a
dynamic invalidStates array. First, you'd create a "getter" method:

1
2
3
4
5
6
7
8

protected $state;

protected $invalidStates = array();

public function isStateInvalid()
{

return in_array($this->state, $this->invalidStates);
}

In this case, the underlying object is only valid if the isStateInvalid method returns false:

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/False.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/FalseValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 47: False | 155

http://sensiolabs.com

1
2
3
4
5
6

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author

getters:
stateInvalid:

- "False":
message: You've entered an invalid state.

When using YAML, be sure to surround False with quotes ("False") or else YAML will convert
this into a Boolean value.

Options

message

type: string default: This value should be false

This message is shown if the underlying data is not false.

PDF brought to you by
generated on February 20, 2013

Chapter 47: False | 156

http://sensiolabs.com

Listing 48-1

Chapter 48

Type

Validates that a value is of a specific data type. For example, if a variable should be an array, you can use
this constraint with the array type option to validate this.

Applies to property or method

Options
• type
• message

Class Type1

Validator TypeValidator2

Basic Usage

1
2
3
4
5
6
7

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
age:

- Type:
type: integer
message: The value {{ value }} is not a valid {{ type }}.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Type.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/TypeValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 48: Type | 157

http://sensiolabs.com

Options

type

type: string [default option]

This required option is the fully qualified class name or one of the PHP datatypes as determined by PHP's
is_ functions.

• array3

• bool4

• callable5

• float6

• double7

• int8

• integer9

• long10

• null11

• numeric12

• object13

• real14

• resource15

• scalar16

• string17

message

type: string default: This value should be of type {{ type }}

The message if the underlying data is not of the given type.

3. http://php.net/is_array

4. http://php.net/is_bool

5. http://php.net/is_callable

6. http://php.net/is_float

7. http://php.net/is_double

8. http://php.net/is_int

9. http://php.net/is_integer

10. http://php.net/is_long

11. http://php.net/is_null

12. http://php.net/is_numeric

13. http://php.net/is_object

14. http://php.net/is_real

15. http://php.net/is_resource

16. http://php.net/is_scalar

17. http://php.net/is_string

PDF brought to you by
generated on February 20, 2013

Chapter 48: Type | 158

http://sensiolabs.com

Listing 49-1

Chapter 49

Email

Validates that a value is a valid email address. The underlying value is cast to a string before being
validated.

Applies to property or method

Options
• message
• checkMX
• checkHost

Class Email1

Validator EmailValidator2

Basic Usage

1
2
3
4
5
6
7

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
email:

- Email:
message: The email "{{ value }}" is not a valid email.
checkMX: true

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Email.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/EmailValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 49: Email | 159

http://sensiolabs.com

Options

message

type: string default: This value is not a valid email address

This message is shown if the underlying data is not a valid email address.

checkMX

type: Boolean default: false

If true, then the checkdnsrr3 PHP function will be used to check the validity of the MX record of the host
of the given email.

checkHost

New in version 2.1: The checkHost option was added in Symfony 2.1

type: Boolean default: false

If true, then the checkdnsrr4 PHP function will be used to check the validity of the MX or the A or the
AAAA record of the host of the given email.

3. http://php.net/manual/en/function.checkdnsrr.php

4. http://php.net/manual/en/function.checkdnsrr.php

PDF brought to you by
generated on February 20, 2013

Chapter 49: Email | 160

http://sensiolabs.com

Listing 50-1

Chapter 50

MinLength

The MinLength constraint is deprecated since version 2.1 and will be removed in Symfony 2.3. Use
Length with the min option instead.

Validates that the length of a string is at least as long as the given limit.

Applies to property or method

Options
• limit
• message
• charset

Class MinLength1

Validator MinLengthValidator2

Basic Usage

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Blog:

properties:
firstName:

- MinLength: { limit: 3, message: "Your name must have at least {{ limit }}
characters." }

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/MinLength.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/MinLengthValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 50: MinLength | 161

http://sensiolabs.com

Options

limit

type: integer [default option]

This required option is the "min" value. Validation will fail if the length of the give string is less than this
number.

message

type: string default: This value is too short. It should have {{ limit }} characters or
more

The message that will be shown if the underlying string has a length that is shorter than the limit option.

charset

type: charset default: UTF-8

If the PHP extension "mbstring" is installed, then the PHP function mb_strlen3 will be used to calculate
the length of the string. The value of the charset option is passed as the second argument to that
function.

3. http://php.net/manual/en/function.mb-strlen.php

PDF brought to you by
generated on February 20, 2013

Chapter 50: MinLength | 162

http://sensiolabs.com

Listing 51-1

Chapter 51

MaxLength

The MaxLength constraint is deprecated since version 2.1 and will be removed in Symfony 2.3.
Use Length with the max option instead.

Validates that the length of a string is not larger than the given limit.

Applies to property or method

Options
• limit
• message
• charset

Class MaxLength1

Validator MaxLengthValidator2

Basic Usage

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Blog:

properties:
summary:

- MaxLength: 100

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/MaxLength.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/MaxLengthValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 51: MaxLength | 163

http://sensiolabs.com

Options

limit

type: integer [default option]

This required option is the "max" value. Validation will fail if the length of the give string is greater than
this number.

message

type: string default: This value is too long. It should have {{ limit }} characters or
less

The message that will be shown if the underlying string has a length that is longer than the limit option.

charset

type: charset default: UTF-8

If the PHP extension "mbstring" is installed, then the PHP function mb_strlen3 will be used to calculate
the length of the string. The value of the charset option is passed as the second argument to that
function.

3. http://php.net/manual/en/function.mb-strlen.php

PDF brought to you by
generated on February 20, 2013

Chapter 51: MaxLength | 164

http://sensiolabs.com

Listing 52-1

Chapter 52

Length

Validates that a given string length is between some minimum and maximum value.

New in version 2.1: The Length constraint was added in Symfony 2.1.

Applies to property or method

Options
• min
• max
• charset
• minMessage
• maxMessage
• exactMessage

Class Length1

Validator LengthValidator2

Basic Usage
To verify that the firstName field length of a class is between "2" and "50", you might add the following:

1
2
3
4
5

src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:

properties:
firstName:

- Length:

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Length.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LengthValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 52: Length | 165

http://sensiolabs.com

6
7
8
9

min: 2
max: 50
minMessage: "Your first name must be at least {{ limit }} characters length"
maxMessage: "Your first name cannot be longer than than {{ limit }}

characters length"

Options

min

type: integer [default option]

This required option is the "min" length value. Validation will fail if the given value's length is less than
this min value.

max

type: integer [default option]

This required option is the "max" length value. Validation will fail if the given value's length is greater
than this max value.

charset

type: string default: UTF-8

The charset to be used when computing value's length. The grapheme_strlen3 PHP function is used if
available. If not, the the mb_strlen4 PHP function is used if available. If neither are available, the strlen5

PHP function is used.

minMessage

type: string default: This value is too short. It should have {{ limit }} characters or
more..

The message that will be shown if the underlying value's length is less than the min option.

maxMessage

type: string default: This value is too long. It should have {{ limit }} characters or
less..

The message that will be shown if the underlying value's length is more than the max option.

exactMessage

type: string default: This value should have exactly {{ limit }} characters..

The message that will be shown if min and max values are equal and the underlying value's length is not
exactly this value.

3. http://php.net/manual/en/function.grapheme-strlen.php

4. http://php.net/manual/en/function.mb-strlen.php

5. http://php.net/manual/en/function.strlen.php

PDF brought to you by
generated on February 20, 2013

Chapter 52: Length | 166

http://sensiolabs.com

Listing 53-1

Chapter 53

Url

Validates that a value is a valid URL string.

Applies to property or method

Options
• message
• protocols

Class Url1

Validator UrlValidator2

Basic Usage

1
2
3
4
5

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
bioUrl:

- Url:

Options

message

type: string default: This value is not a valid URL

This message is shown if the URL is invalid.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Url.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/UrlValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 53: Url | 167

http://sensiolabs.com

protocols

type: array default: array('http', 'https')

The protocols that will be considered to be valid. For example, if you also needed ftp:// type URLs to
be valid, you'd redefine the protocols array, listing http, https, and also ftp.

PDF brought to you by
generated on February 20, 2013

Chapter 53: Url | 168

http://sensiolabs.com

Listing 54-1

Listing 54-2

Chapter 54

Regex

Validates that a value matches a regular expression.

Applies to property or method

Options
• pattern
• match
• message

Class Regex1

Validator RegexValidator2

Basic Usage
Suppose you have a description field and you want to verify that it begins with a valid word character.
The regular expression to test for this would be /^\w+/, indicating that you're looking for at least one or
more word characters at the beginning of your string:

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
description:

- Regex: "/^\w+/"

Alternatively, you can set the match option to false in order to assert that a given string does not match.
In the following example, you'll assert that the firstName field does not contain any numbers and give it
a custom message:

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Regex.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/RegexValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 54: Regex | 169

http://sensiolabs.com

properties:
firstName:

- Regex:
pattern: "/\d/"
match: false
message: Your name cannot contain a number

Options

pattern

type: string [default option]

This required option is the regular expression pattern that the input will be matched against. By default,
this validator will fail if the input string does not match this regular expression (via the preg_match3 PHP
function). However, if match is set to false, then validation will fail if the input string does match this
pattern.

match

type: Boolean default: true

If true (or not set), this validator will pass if the given string matches the given pattern regular expression.
However, when this option is set to false, the opposite will occur: validation will pass only if the given
string does not match the pattern regular expression.

message

type: string default: This value is not valid

This is the message that will be shown if this validator fails.

3. http://php.net/manual/en/function.preg-match.php

PDF brought to you by
generated on February 20, 2013

Chapter 54: Regex | 170

http://sensiolabs.com

Listing 55-1

Chapter 55

Ip

Validates that a value is a valid IP address. By default, this will validate the value as IPv4, but a number
of different options exist to validate as IPv6 and many other combinations.

Applies to property or method

Options
• version
• message

Class Ip1

Validator IpValidator2

Basic Usage

1
2
3
4
5

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
ipAddress:

- Ip:

Options

version

type: string default: 4

This determines exactly how the ip address is validated and can take one of a variety of different values:

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Ip.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/IpValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 55: Ip | 171

http://sensiolabs.com

All ranges

• 4 - Validates for IPv4 addresses
• 6 - Validates for IPv6 addresses
• all - Validates all IP formats

No private ranges

• 4_no_priv - Validates for IPv4 but without private IP ranges
• 6_no_priv - Validates for IPv6 but without private IP ranges
• all_no_priv - Validates for all IP formats but without private IP ranges

No reserved ranges

• 4_no_res - Validates for IPv4 but without reserved IP ranges
• 6_no_res - Validates for IPv6 but without reserved IP ranges
• all_no_res - Validates for all IP formats but without reserved IP ranges

Only public ranges

• 4_public - Validates for IPv4 but without private and reserved ranges
• 6_public - Validates for IPv6 but without private and reserved ranges
• all_public - Validates for all IP formats but without private and reserved ranges

message

type: string default: This is not a valid IP address

This message is shown if the string is not a valid IP address.

PDF brought to you by
generated on February 20, 2013

Chapter 55: Ip | 172

http://sensiolabs.com

Listing 56-1

Chapter 56

Max

The Max constraint is deprecated since version 2.1 and will be removed in Symfony 2.3. Use Range
with the max option instead.

Validates that a given number is less than some maximum number.

Applies to property or method

Options
• limit
• message
• invalidMessage

Class Max1

Validator MaxValidator2

Basic Usage
To verify that the "age" field of a class is not greater than "50", you might add the following:

1
2
3
4
5

src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:

properties:
age:

- Max: { limit: 50, message: You must be 50 or under to enter. }

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Max.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/MaxValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 56: Max | 173

http://sensiolabs.com

Options

limit

type: integer [default option]

This required option is the "max" value. Validation will fail if the given value is greater than this max
value.

message

type: string default: This value should be {{ limit }} or less

The message that will be shown if the underlying value is greater than the limit option.

invalidMessage

type: string default: This value should be a valid number

The message that will be shown if the underlying value is not a number (per the is_numeric3 PHP
function).

3. http://php.net/manual/en/function.is-numeric.php

PDF brought to you by
generated on February 20, 2013

Chapter 56: Max | 174

http://sensiolabs.com

Listing 57-1

Chapter 57

Min

The Min constraint is deprecated since version 2.1 and will be removed in Symfony 2.3. Use Range
with the min option instead.

Validates that a given number is greater than some minimum number.

Applies to property or method

Options
• limit
• message
• invalidMessage

Class Min1

Validator MinValidator2

Basic Usage
To verify that the "age" field of a class is "18" or greater, you might add the following:

1
2
3
4
5

src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:

properties:
age:

- Min: { limit: 18, message: You must be 18 or older to enter. }

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Min.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/MinValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 57: Min | 175

http://sensiolabs.com

Options

limit

type: integer [default option]

This required option is the "min" value. Validation will fail if the given value is less than this min value.

message

type: string default: This value should be {{ limit }} or more

The message that will be shown if the underlying value is less than the limit option.

invalidMessage

type: string default: This value should be a valid number

The message that will be shown if the underlying value is not a number (per the is_numeric3 PHP
function).

3. http://php.net/manual/en/function.is-numeric.php

PDF brought to you by
generated on February 20, 2013

Chapter 57: Min | 176

http://sensiolabs.com

Listing 58-1

Chapter 58

Range

Validates that a given number is between some minimum and maximum number.

New in version 2.1: The Range constraint was added in Symfony 2.1.

Applies to property or method

Options
• min
• max
• minMessage
• maxMessage
• invalidMessage

Class Range1

Validator RangeValidator2

Basic Usage
To verify that the "height" field of a class is between "120" and "180", you might add the following:

1
2
3
4
5
6

src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:

properties:
height:

- Range:
min: 120

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Range.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/RangeValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 58: Range | 177

http://sensiolabs.com

7
8
9

max: 180
minMessage: You must be at least 120cm tall to enter
maxMessage: You cannot be taller than 180cm to enter

Options

min

type: integer [default option]

This required option is the "min" value. Validation will fail if the given value is less than this min value.

max

type: integer [default option]

This required option is the "max" value. Validation will fail if the given value is greater than this max
value.

minMessage

type: string default: This value should be {{ limit }} or more.

The message that will be shown if the underlying value is less than the min option.

maxMessage

type: string default: This value should be {{ limit }} or less.

The message that will be shown if the underlying value is more than the max option.

invalidMessage

type: string default: This value should be a valid number.

The message that will be shown if the underlying value is not a number (per the is_numeric3 PHP
function).

3. http://www.php.net/manual/en/function.is-numeric.php

PDF brought to you by
generated on February 20, 2013

Chapter 58: Range | 178

http://sensiolabs.com

Listing 59-1

Chapter 59

Date

Validates that a value is a valid date, meaning either a DateTime object or a string (or an object that can
be cast into a string) that follows a valid YYYY-MM-DD format.

Applies to property or method

Options
• message

Class Date1

Validator DateValidator2

Basic Usage

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
birthday:

- Date: ~

Options

message

type: string default: This value is not a valid date

This message is shown if the underlying data is not a valid date.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Date.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/DateValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 59: Date | 179

http://sensiolabs.com

Listing 60-1

Chapter 60

DateTime

Validates that a value is a valid "datetime", meaning either a DateTime object or a string (or an object that
can be cast into a string) that follows a valid YYYY-MM-DD HH:MM:SS format.

Applies to property or method

Options
• message

Class DateTime1

Validator DateTimeValidator2

Basic Usage

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
createdAt:

- DateTime: ~

Options

message

type: string default: This value is not a valid datetime

This message is shown if the underlying data is not a valid datetime.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/DateTime.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/DateTimeValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 60: DateTime | 180

http://sensiolabs.com

Listing 61-1

Chapter 61

Time

Validates that a value is a valid time, meaning either a DateTime object or a string (or an object that can
be cast into a string) that follows a valid "HH:MM:SS" format.

Applies to property or method

Options
• message

Class Time1

Validator TimeValidator2

Basic Usage
Suppose you have an Event class, with a startAt field that is the time of the day when the event starts:

1
2
3
4
5

src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Event:

properties:
startsAt:

- Time: ~

Options

message

type: string default: This value is not a valid time

This message is shown if the underlying data is not a valid time.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Time.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/TimeValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 61: Time | 181

http://sensiolabs.com

Listing 62-1

Chapter 62

Choice

This constraint is used to ensure that the given value is one of a given set of valid choices. It can also be
used to validate that each item in an array of items is one of those valid choices.

Applies to property or method

Options
• choices
• callback
• multiple
• min
• max
• message
• multipleMessage
• minMessage
• maxMessage
• strict

Class Choice1

Validator ChoiceValidator2

Basic Usage
The basic idea of this constraint is that you supply it with an array of valid values (this can be done in
several ways) and it validates that the value of the given property exists in that array.

If your valid choice list is simple, you can pass them in directly via the choices option:

1
2

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Choice.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/ChoiceValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 62: Choice | 182

http://sensiolabs.com

Listing 62-2

Listing 62-3

Listing 62-4

3
4
5
6
7

properties:
gender:

- Choice:
choices: [male, female]
message: Choose a valid gender.

Supplying the Choices with a Callback Function
You can also use a callback function to specify your options. This is useful if you want to keep your
choices in some central location so that, for example, you can easily access those choices for validation
or for building a select form element.

1
2
3
4
5
6
7
8

// src/Acme/BlogBundle/Entity/Author.php
class Author
{

public static function getGenders()
{

return array('male', 'female');
}

}

You can pass the name of this method to the callback_ option of the Choice constraint.

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
gender:

- Choice: { callback: getGenders }

If the static callback is stored in a different class, for example Util, you can pass the class name and the
method as an array.

1
2
3
4
5

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
gender:

- Choice: { callback: [Util, getGenders] }

Available Options

choices

type: array [default option]

A required option (unless callback is specified) - this is the array of options that should be considered in
the valid set. The input value will be matched against this array.

callback

type: string|array|Closure

PDF brought to you by
generated on February 20, 2013

Chapter 62: Choice | 183

http://sensiolabs.com

This is a callback method that can be used instead of the choices option to return the choices array. See
Supplying the Choices with a Callback Function for details on its usage.

multiple

type: Boolean default: false

If this option is true, the input value is expected to be an array instead of a single, scalar value. The
constraint will check that each value of the input array can be found in the array of valid choices. If even
one of the input values cannot be found, the validation will fail.

min

type: integer

If the multiple option is true, then you can use the min option to force at least XX number of values to
be selected. For example, if min is 3, but the input array only contains 2 valid items, the validation will
fail.

max

type: integer

If the multiple option is true, then you can use the max option to force no more than XX number of
values to be selected. For example, if max is 3, but the input array contains 4 valid items, the validation
will fail.

message

type: string default: The value you selected is not a valid choice

This is the message that you will receive if the multiple option is set to false, and the underlying value
is not in the valid array of choices.

multipleMessage

type: string default: One or more of the given values is invalid

This is the message that you will receive if the multiple option is set to true, and one of the values on
the underlying array being checked is not in the array of valid choices.

minMessage

type: string default: You must select at least {{ limit }} choices

This is the validation error message that's displayed when the user chooses too few choices per the min
option.

maxMessage

type: string default: You must select at most {{ limit }} choices

This is the validation error message that's displayed when the user chooses too many options per the max
option.

strict

type: Boolean default: false

PDF brought to you by
generated on February 20, 2013

Chapter 62: Choice | 184

http://sensiolabs.com

If true, the validator will also check the type of the input value. Specifically, this value is passed to as the
third argument to the PHP in_array3 method when checking to see if a value is in the valid choices array.

3. http://php.net/manual/en/function.in-array.php

PDF brought to you by
generated on February 20, 2013

Chapter 62: Choice | 185

http://sensiolabs.com

Listing 63-1

Chapter 63

Collection

This constraint is used when the underlying data is a collection (i.e. an array or an object that implements
Traversable and ArrayAccess), but you'd like to validate different keys of that collection in different
ways. For example, you might validate the email key using the Email constraint and the inventory key
of the collection with the Range constraint.

This constraint can also make sure that certain collection keys are present and that extra keys are not
present.

Applies to property or method

Options
• fields
• allowExtraFields
• extraFieldsMessage
• allowMissingFields
• missingFieldsMessage

Class Collection1

Validator CollectionValidator2

Basic Usage
The Collection constraint allows you to validate the different keys of a collection individually. Take the
following example:

1
2
3
4

namespace Acme\BlogBundle\Entity;

class Author
{

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Collection.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CollectionValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 63: Collection | 186

http://sensiolabs.com

Listing 63-2

5
6
7
8
9

10
11
12
13
14

protected $profileData = array(
'personal_email',
'short_bio',

);

public function setProfileData($key, $value)
{

$this->profileData[$key] = $value;
}

}

To validate that the personal_email element of the profileData array property is a valid email address
and that the short_bio element is not blank but is no longer than 100 characters in length, you would
do the following:

1
2
3
4
5
6
7
8
9

10
11
12
13

src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
profileData:

- Collection:
fields:

personal_email: Email
short_bio:

- NotBlank
- Length:

max: 100
maxMessage: Your short bio is too long!

allowMissingFields: true

Presence and Absence of Fields

By default, this constraint validates more than simply whether or not the individual fields in the collection
pass their assigned constraints. In fact, if any keys of a collection are missing or if there are any
unrecognized keys in the collection, validation errors will be thrown.

If you would like to allow for keys to be absent from the collection or if you would like "extra" keys
to be allowed in the collection, you can modify the allowMissingFields and allowExtraFields options
respectively. In the above example, the allowMissingFields option was set to true, meaning that if
either of the personal_email or short_bio elements were missing from the $personalData property,
no validation error would occur.

Options

fields

type: array [default option]

This option is required, and is an associative array defining all of the keys in the collection and, for each
key, exactly which validator(s) should be executed against that element of the collection.

allowExtraFields

type: Boolean default: false

PDF brought to you by
generated on February 20, 2013

Chapter 63: Collection | 187

http://sensiolabs.com

If this option is set to false and the underlying collection contains one or more elements that are not
included in the fields option, a validation error will be returned. If set to true, extra fields are ok.

extraFieldsMessage

type: Boolean default: The fields {{ fields }} were not expected

The message shown if allowExtraFields is false and an extra field is detected.

allowMissingFields

type: Boolean default: false

If this option is set to false and one or more fields from the fields option are not present in the
underlying collection, a validation error will be returned. If set to true, it's ok if some fields in the fields_
option are not present in the underlying collection.

missingFieldsMessage

type: Boolean default: The fields {{ fields }} are missing

The message shown if allowMissingFields is false and one or more fields are missing from the underlying
collection.

PDF brought to you by
generated on February 20, 2013

Chapter 63: Collection | 188

http://sensiolabs.com

Listing 64-1

Chapter 64

Count

Validates that a given collection's (i.e. an array or an object that implements Countable) element count is
between some minimum and maximum value.

New in version 2.1: The Count constraint was added in Symfony 2.1.

Applies to property or method

Options
• min
• max
• minMessage
• maxMessage
• exactMessage

Class Count1

Validator CountValidator2

Basic Usage
To verify that the emails array field contains between 1 and 5 elements you might add the following:

1
2
3
4
5

src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:

properties:
emails:

- Count:

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Count.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CountValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 64: Count | 189

http://sensiolabs.com

6
7
8
9

min: 1
max: 5
minMessage: "You must specify at least one email"
maxMessage: "You cannot specify more than {{ limit }} emails"

Options

min

type: integer [default option]

This required option is the "min" count value. Validation will fail if the given collection elements count
is less than this min value.

max

type: integer [default option]

This required option is the "max" count value. Validation will fail if the given collection elements count
is greater than this max value.

minMessage

type: string default: This collection should contain {{ limit }} elements or more..

The message that will be shown if the underlying collection elements count is less than the min option.

maxMessage

type: string default: This collection should contain {{ limit }} elements or less..

The message that will be shown if the underlying collection elements count is more than the max option.

exactMessage

type: string default: This collection should contain exactly {{ limit }} elements..

The message that will be shown if min and max values are equal and the underlying collection elements
count is not exactly this value.

PDF brought to you by
generated on February 20, 2013

Chapter 64: Count | 190

http://sensiolabs.com

Listing 65-1

Chapter 65

UniqueEntity

Validates that a particular field (or fields) in a Doctrine entity is (are) unique. This is commonly used, for
example, to prevent a new user to register using an email address that already exists in the system.

Applies to class

Options
• fields
• message
• em
• repositoryMethod

Class UniqueEntity1

Validator UniqueEntityValidator2

Basic Usage
Suppose you have an AcmeUserBundle bundle with a User entity that has an email field. You can use the
UniqueEntity constraint to guarantee that the email field remains unique between all of the constraints
in your user table:

1
2
3
4
5
6
7
8
9

// Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;
use Doctrine\ORM\Mapping as ORM;

// DON'T forget this use statement!!!
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

1. http://api.symfony.com/master/Symfony/Bridge/Doctrine/Validator/Constraints/UniqueEntity.html

2. http://api.symfony.com/master/Symfony/Bridge/Doctrine/Validator/Constraints/UniqueEntityValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 65: UniqueEntity | 191

http://sensiolabs.com

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/**
* @ORM\Entity
* @UniqueEntity("email")
*/
class Author
{

/**
* @var string $email
*
* @ORM\Column(name="email", type="string", length=255, unique=true)
* @Assert\Email()
*/
protected $email;

// ...
}

Options

fields

type: array | string [default option]

This required option is the field (or list of fields) on which this entity should be unique. For example, if
you specified both the email and name field in a single UniqueEntity constraint, then it would enforce
that the combination value where unique (e.g. two users could have the same email, as long as they don't
have the same name also).

If you need to require two fields to be individually unique (e.g. a unique email and a unique username),
you use two UniqueEntity entries, each with a single field.

message

type: string default: This value is already used.

The message that's displayed when this constraint fails.

em

type: string

The name of the entity manager to use for making the query to determine the uniqueness. If it's left blank,
the correct entity manager will determined for this class. For that reason, this option should probably not
need to be used.

repositoryMethod

type: string default: findBy

New in version 2.1: The repositoryMethod option was added in Symfony 2.1. Before, it always
used the findBy method.

PDF brought to you by
generated on February 20, 2013

Chapter 65: UniqueEntity | 192

http://sensiolabs.com

The name of the repository method to use for making the query to determine the uniqueness. If it's left
blank, the findBy method will be used. This method should return a countable result.

PDF brought to you by
generated on February 20, 2013

Chapter 65: UniqueEntity | 193

http://sensiolabs.com

Listing 66-1

Chapter 66

Language

Validates that a value is a valid language code.

Applies to property or method

Options
• message

Class Language1

Validator LanguageValidator2

Basic Usage

1
2
3
4
5

src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:

properties:
preferredLanguage:

- Language:

Options

message

type: string default: This value is not a valid language

This message is shown if the string is not a valid language code.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Language.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LanguageValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 66: Language | 194

http://sensiolabs.com

Listing 67-1

Chapter 67

Locale

Validates that a value is a valid locale.

The "value" for each locale is either the two letter ISO639-1 language code (e.g. fr), or the language code
followed by an underscore (_), then the ISO3166 country code (e.g. fr_FR for French/France).

Applies to property or method

Options
• message

Class Locale1

Validator LocaleValidator2

Basic Usage

1
2
3
4
5

src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:

properties:
locale:

- Locale:

Options

message

type: string default: This value is not a valid locale

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Locale.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LocaleValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 67: Locale | 195

http://sensiolabs.com

This message is shown if the string is not a valid locale.

PDF brought to you by
generated on February 20, 2013

Chapter 67: Locale | 196

http://sensiolabs.com

Listing 68-1

Chapter 68

Country

Validates that a value is a valid two-letter country code.

Applies to property or method

Options
• message

Class Country1

Validator CountryValidator2

Basic Usage

1
2
3
4
5

src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:

properties:
country:

- Country:

Options

message

type: string default: This value is not a valid country

This message is shown if the string is not a valid country code.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Country.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CountryValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 68: Country | 197

http://sensiolabs.com

Chapter 69

File

Validates that a value is a valid "file", which can be one of the following:

• A string (or object with a __toString() method) path to an existing file;
• A valid File1 object (including objects of class UploadedFile2).

This constraint is commonly used in forms with the file form type.

If the file you're validating is an image, try the Image constraint.

Applies to property or method

Options
• maxSize
• mimeTypes
• maxSizeMessage
• mimeTypesMessage
• notFoundMessage
• notReadableMessage
• uploadIniSizeErrorMessage
• uploadFormSizeErrorMessage
• uploadErrorMessage

Class File3

Validator FileValidator4

1. http://api.symfony.com/master/Symfony/Component/HttpFoundation/File/File.html

2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/File/UploadedFile.html

3. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/File.html

4. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/FileValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 69: File | 198

http://sensiolabs.com

Listing 69-1

Listing 69-2

Basic Usage
This constraint is most commonly used on a property that will be rendered in a form as a file form type.
For example, suppose you're creating an author form where you can upload a "bio" PDF for the author.
In your form, the bioFile property would be a file type. The Author class might look as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{

protected $bioFile;

public function setBioFile(File $file = null)
{

$this->bioFile = $file;
}

public function getBioFile()
{

return $this->bioFile;
}

}

To guarantee that the bioFile File object is valid, and that it is below a certain file size and a valid PDF,
add the following:

1
2
3
4
5
6
7
8

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

properties:
bioFile:

- File:
maxSize: 1024k
mimeTypes: [application/pdf, application/x-pdf]
mimeTypesMessage: Please upload a valid PDF

The bioFile property is validated to guarantee that it is a real file. Its size and mime type are also
validated because the appropriate options have been specified.

Options

maxSize

type: mixed

If set, the size of the underlying file must be below this file size in order to be valid. The size of the file
can be given in one of the following formats:

• bytes: To specify the maxSize in bytes, pass a value that is entirely numeric (e.g. 4096);
• kilobytes: To specify the maxSize in kilobytes, pass a number and suffix it with a lowercase

"k" (e.g. 200k);
• megabytes: To specify the maxSize in megabytes, pass a number and suffix it with a capital

"M" (e.g. 4M).

PDF brought to you by
generated on February 20, 2013

Chapter 69: File | 199

http://sensiolabs.com

mimeTypes

type: array or string

If set, the validator will check that the mime type of the underlying file is equal to the given mime type (if
a string) or exists in the collection of given mime types (if an array).

You can find a list of existing mime types on the IANA website5

maxSizeMessage

type: string default: The file is too large ({{ size }}). Allowed maximum size is {{ limit
}}

The message displayed if the file is larger than the maxSize option.

mimeTypesMessage

type: string default: The mime type of the file is invalid ({{ type }}). Allowed mime types
are {{ types }}

The message displayed if the mime type of the file is not a valid mime type per the mimeTypes option.

notFoundMessage

type: string default: The file could not be found

The message displayed if no file can be found at the given path. This error is only likely if the underlying
value is a string path, as a File object cannot be constructed with an invalid file path.

notReadableMessage

type: string default: The file is not readable

The message displayed if the file exists, but the PHP is_readable function fails when passed the path to
the file.

uploadIniSizeErrorMessage

type: string default: The file is too large. Allowed maximum size is {{ limit }}

The message that is displayed if the uploaded file is larger than the upload_max_filesize PHP.ini
setting.

uploadFormSizeErrorMessage

type: string default: The file is too large

The message that is displayed if the uploaded file is larger than allowed by the HTML file input field.

uploadErrorMessage

type: string default: The file could not be uploaded

The message that is displayed if the uploaded file could not be uploaded for some unknown reason, such
as the file upload failed or it couldn't be written to disk.

5. http://www.iana.org/assignments/media-types/index.html

PDF brought to you by
generated on February 20, 2013

Chapter 69: File | 200

http://sensiolabs.com

Chapter 70

Image

The Image constraint works exactly like the File constraint, except that its mimeTypes and
mimeTypesMessage options are automatically setup to work for image files specifically.

Additionally, as of Symfony 2.1, it has options so you can validate against the width and height of the
image.

See the File constraint for the bulk of the documentation on this constraint.

Applies to property or method

Options
• mimeTypes
• minWidth
• maxWidth
• maxHeight
• minHeight
• mimeTypesMessage
• sizeNotDetectedMessage
• maxWidthMessage
• minWidthMessage
• maxHeightMessage
• minHeightMessage
• See File for inherited options

Class File1

Validator FileValidator2

Basic Usage
This constraint is most commonly used on a property that will be rendered in a form as a file form type.
For example, suppose you're creating an author form where you can upload a "headshot" image for the

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/File.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/FileValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 70: Image | 201

http://sensiolabs.com

Listing 70-1

Listing 70-2

author. In your form, the headshot property would be a file type. The Author class might look as
follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{

protected $headshot;

public function setHeadshot(File $file = null)
{

$this->headshot = $file;
}

public function getHeadshot()
{

return $this->headshot;
}

}

To guarantee that the headshot File object is a valid image and that it is between a certain size, add the
following:

1
2
3
4
5
6
7
8
9

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author

properties:
headshot:

- Image:
minWidth: 200
maxWidth: 400
minHeight: 200
maxHeight: 400

The headshot property is validated to guarantee that it is a real image and that it is between a certain
width and height.

Options
This constraint shares all of its options with the File constraint. It does, however, modify two of the
default option values and add several other options.

mimeTypes

type: array or string default: image/*

You can find a list of existing image mime types on the IANA website3

mimeTypesMessage

type: string default: This file is not a valid image

3. http://www.iana.org/assignments/media-types/image/index.html

PDF brought to you by
generated on February 20, 2013

Chapter 70: Image | 202

http://sensiolabs.com

New in version 2.1: All of the min/max width/height options are new to Symfony 2.1.

minWidth

type: integer

If set, the width of the image file must be greater than or equal to this value in pixels.

maxWidth

type: integer

If set, the width of the image file must be less than or equal to this value in pixels.

minHeight

type: integer

If set, the height of the image file must be greater than or equal to this value in pixels.

maxHeight

type: integer

If set, the height of the image file must be less than or equal to this value in pixels.

sizeNotDetectedMessage

type: string default: The size of the image could not be detected

If the system is unable to determine the size of the image, this error will be displayed. This will only occur
when at least one of the four size constraint options has been set.

maxWidthMessage

type: string default: The image width is too big ({{ width }}px). Allowed maximum width is
{{ max_width }}px

The error message if the width of the image exceeds maxWidth.

minWidthMessage

type: string default: The image width is too small ({{ width }}px). Minimum width expected
is {{ min_width }}px

The error message if the width of the image is less than minWidth.

maxHeightMessage

type: string default: The image height is too big ({{ height }}px). Allowed maximum height
is {{ max_height }}px

The error message if the height of the image exceeds maxHeight.

PDF brought to you by
generated on February 20, 2013

Chapter 70: Image | 203

http://sensiolabs.com

minHeightMessage

type: string default: The image height is too small ({{ height }}px). Minimum height
expected is {{ min_height }}px

The error message if the height of the image is less than minHeight.

PDF brought to you by
generated on February 20, 2013

Chapter 70: Image | 204

http://sensiolabs.com

Listing 71-1

Chapter 71

CardScheme

New in version 2.2: The CardScheme validation is new in Symfony 2.2.

This constraint ensures that a credit card number is valid for a given credit card company. It can be used
to validate the number before trying to initiate a payment through a payment gateway.

Applies to property or method

Options
• schemes
• message

Class CardScheme1

Validator CardSchemeValidator2

Basic Usage
To use the CardScheme validator, simply apply it to a property or method on an object that will contain
a credit card number.

1
2
3
4
5
6
7

src/Acme/SubscriptionBundle/Resources/config/validation.yml
Acme\SubscriptionBundle\Entity\Transaction:

properties:
cardNumber:

- CardScheme:
schemes: [VISA]
message: You credit card number is invalid.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CardScheme.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CardSchemeValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 71: CardScheme | 205

http://sensiolabs.com

Available Options

schemes
type: mixed [default option]

This option is required and represents the name of the number scheme used to validate the credit card
number, it can either be a string or an array. Valid values are:

• AMEX
• CHINA_UNIONPAY
• DINERS
• DISCOVER
• INSTAPAYMENT
• JCB
• LASER
• MAESTRO
• MASTERCARD
• VISA

For more information about the used schemes, see Wikipedia: Issuer identification number (IIN)3.

message

type: string default: Unsupported card type or invalid card number

The message shown when the value does not pass the CardScheme check.

3. http://en.wikipedia.org/wiki/Bank_card_number#Issuer_identification_number_.28IIN.29

PDF brought to you by
generated on February 20, 2013

Chapter 71: CardScheme | 206

http://sensiolabs.com

Listing 72-1

Chapter 72

Luhn

New in version 2.2: The Luhn validation is new in Symfony 2.2.

This constraint is used to ensure that a credit card number passes the Luhn algorithm1. It is useful as a
first step to validating a credit card: before communicating with a payment gateway.

Applies to property or method

Options
• message

Class Luhn2

Validator LuhnValidator3

Basic Usage
To use the Luhn validator, simply apply it to a property on an object that will contain a credit card
number.

1
2
3
4
5
6

src/Acme/SubscriptionBundle/Resources/config/validation.yml
Acme\SubscriptionBundle\Entity\Transaction:

properties:
cardNumber:

- Luhn:
message: Please check your credit card number.

1. http://en.wikipedia.org/wiki/Luhn_algorithm

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Luhn.html

3. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LuhnValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 72: Luhn | 207

http://sensiolabs.com

Available Options

message

type: string default: Invalid card number

The default message supplied when the value does not pass the Luhn check.

PDF brought to you by
generated on February 20, 2013

Chapter 72: Luhn | 208

http://sensiolabs.com

Listing 73-1

Chapter 73

Callback

The purpose of the Callback assertion is to let you create completely custom validation rules and to assign
any validation errors to specific fields on your object. If you're using validation with forms, this means
that you can make these custom errors display next to a specific field, instead of simply at the top of your
form.

This process works by specifying one or more callback methods, each of which will be called during the
validation process. Each of those methods can do anything, including creating and assigning validation
errors.

A callback method itself doesn't fail or return any value. Instead, as you'll see in the example, a
callback method has the ability to directly add validator "violations".

Applies to class

Options
• methods

Class Callback1

Validator CallbackValidator2

Setup

1
2
3

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

constraints:

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Callback.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CallbackValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 73: Callback | 209

http://sensiolabs.com

Listing 73-2

Listing 73-3

4
5

- Callback:
methods: [isAuthorValid]

The Callback Method
The callback method is passed a special ExecutionContext object. You can set "violations" directly on
this object and determine to which field those errors should be attributed:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// ...
use Symfony\Component\Validator\ExecutionContext;

class Author
{

// ...
private $firstName;

public function isAuthorValid(ExecutionContext $context)
{

// somehow you have an array of "fake names"
$fakeNames = array();

// check if the name is actually a fake name
if (in_array($this->getFirstName(), $fakeNames)) {

$context->addViolationAt('firstname', 'This name sounds totally fake!',
array(), null);

}
}

}

Options

methods

type: array default: array() [default option]

This is an array of the methods that should be executed during the validation process. Each method can
be one of the following formats:

1. String method name

If the name of a method is a simple string (e.g. isAuthorValid), that method will be
called on the same object that's being validated and the ExecutionContext will be
the only argument (see the above example).

2. Static array callback

Each method can also be specified as a standard array callback:

1
2
3
4

src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:

constraints:
- Callback:

PDF brought to you by
generated on February 20, 2013

Chapter 73: Callback | 210

http://sensiolabs.com

Listing 73-4

5
6

methods:
- [Acme\BlogBundle\MyStaticValidatorClass,

isAuthorValid]

In this case, the static method isAuthorValid will be called on the
Acme\BlogBundle\MyStaticValidatorClass class. It's passed both the original
object being validated (e.g. Author) as well as the ExecutionContext:

1
2
3
4
5
6
7
8
9
10
11
12

namespace Acme\BlogBundle;

use Symfony\Component\Validator\ExecutionContext;
use Acme\BlogBundle\Entity\Author;

class MyStaticValidatorClass
{

public static function isAuthorValid(Author $author,
ExecutionContext $context)

{
// ...

}
}

If you specify your Callback constraint via PHP, then you also have the
option to make your callback either a PHP closure or a non-static callback.
It is not currently possible, however, to specify a service as a constraint. To
validate using a service, you should create a custom validation constraint and
add that new constraint to your class.

PDF brought to you by
generated on February 20, 2013

Chapter 73: Callback | 211

http://sensiolabs.com

Listing 74-1

Chapter 74

All

When applied to an array (or Traversable object), this constraint allows you to apply a collection of
constraints to each element of the array.

Applies to property or method

Options
• constraints

Class All1

Validator AllValidator2

Basic Usage
Suppose that you have an array of strings, and you want to validate each entry in that array:

1
2
3
4
5
6
7
8

src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:

properties:
favoriteColors:

- All:
- NotBlank: ~
- Length:

min: 5

Now, each entry in the favoriteColors array will be validated to not be blank and to be at least 5
characters long.

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/All.html

2. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/AllValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 74: All | 212

http://sensiolabs.com

Options

constraints

type: array [default option]

This required option is the array of validation constraints that you want to apply to each element of the
underlying array.

PDF brought to you by
generated on February 20, 2013

Chapter 74: All | 213

http://sensiolabs.com

Listing 75-1

Chapter 75

UserPassword

New in version 2.1: This constraint is new in version 2.1.

This validates that an input value is equal to the current authenticated user's password. This is useful in
a form where a user can change his password, but needs to enter his old password for security.

This should not be used to validate a login form, since this is done automatically by the security
system.

Applies to property or method

Options
• message

Class UserPassword1

Validator UserPasswordValidator2

Basic Usage
Suppose you have a PasswordChange class, that's used in a form where the user can change his password
by entering his old password and a new password. This constraint will validate that the old password
matches the user's current password:

1. http://api.symfony.com/master/Symfony/Component/Security/Core/Validator/Constraint/UserPassword.html

2. http://api.symfony.com/master/Symfony/Component/Security/Core/Validator/Constraint/UserPasswordValidator.html

PDF brought to you by
generated on February 20, 2013

Chapter 75: UserPassword | 214

http://sensiolabs.com

1
2
3
4
5
6

src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Form\Model\ChangePassword:

properties:
oldPassword:

- Symfony\Component\Security\Core\Validator\Constraint\UserPassword:
message: "Wrong value for your current password"

Options

message

type: message default: This value should be the user current password

This is the message that's displayed when the underlying string does not match the current user's
password.

PDF brought to you by
generated on February 20, 2013

Chapter 75: UserPassword | 215

http://sensiolabs.com

Listing 76-1

Listing 76-2

Chapter 76

Valid

This constraint is used to enable validation on objects that are embedded as properties on an object being
validated. This allows you to validate an object and all sub-objects associated with it.

Applies to property or method

Options
• traverse

Class Type1

Basic Usage
In the following example, create two classes Author and Address that both have constraints on their
properties. Furthermore, Author stores an Address instance in the $address property.

1
2
3
4
5
6

// src/Acme/HelloBundle/Address.php
class Address
{

protected $street;
protected $zipCode;

}

1
2
3
4
5
6
7

// src/Acme/HelloBundle/Author.php
class Author
{

protected $firstName;
protected $lastName;
protected $address;

}

1. http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Type.html

PDF brought to you by
generated on February 20, 2013

Chapter 76: Valid | 216

http://sensiolabs.com

Listing 76-3

Listing 76-4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

src/Acme/HelloBundle/Resources/config/validation.yml
Acme\HelloBundle\Address:

properties:
street:

- NotBlank: ~
zipCode:

- NotBlank: ~
- Length:

max: 5

Acme\HelloBundle\Author:
properties:

firstName:
- NotBlank: ~
- Length:

min: 4
lastName:

- NotBlank: ~

With this mapping, it is possible to successfully validate an author with an invalid address. To prevent
that, add the Valid constraint to the $address property.

1
2
3
4
5

src/Acme/HelloBundle/Resources/config/validation.yml
Acme\HelloBundle\Author:

properties:
address:

- Valid: ~

If you validate an author with an invalid address now, you can see that the validation of the Address
fields failed.

AcmeHelloBundleAuthor.address.zipCode: This value is too long. It should have 5 characters
or less

Options

traverse

type: string default: true

If this constraint is applied to a property that holds an array of objects, then each object in that array will
be validated only if this option is set to true.

PDF brought to you by
generated on February 20, 2013

Chapter 76: Valid | 217

http://sensiolabs.com

Chapter 77

The Dependency Injection Tags

Dependency Injection Tags are little strings that can be applied to a service to "flag" it to be used in some
special way. For example, if you have a service that you would like to register as a listener to one of
Symfony's core events, you can flag it with the kernel.event_listener tag.

You can learn a little bit more about "tags" by reading the "Tags" section of the Service Container chapter.

Below is information about all of the tags available inside Symfony2. There may also be tags in other
bundles you use that aren't listed here. For example, the AsseticBundle has several tags that aren't listed
here.

Tag Name Usage

data_collector Create a class that collects custom data for the profiler

form.type Create a custom form field type

form.type_extension Create a custom "form extension"

form.type_guesser Add your own logic for "form type guessing"

kernel.cache_warmer Register your service to be called during the cache warming process

kernel.event_listener Listen to different events/hooks in Symfony

kernel.event_subscriber To subscribe to a set of different events/hooks in Symfony

monolog.logger Logging with a custom logging channel

monolog.processor Add a custom processor for logging

routing.loader Register a custom service that loads routes

security.voter Add a custom voter to Symfony's authorization logic

security.remember_me_aware To allow remember me authentication

security.listener.factory Necessary when creating a custom authentication system

swiftmailer.plugin Register a custom SwiftMailer Plugin

templating.helper Make your service available in PHP templates

translation.loader Register a custom service that loads translations

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 218

http://sensiolabs.com

Listing 77-1

Listing 77-2

twig.extension Register a custom Twig Extension

twig.loader Register a custom service that loads Twig templates

validator.constraint_validator Create your own custom validation constraint

validator.initializer Register a service that initializes objects before validation

data_collector
Purpose: Create a class that collects custom data for the profiler

For details on creating your own custom data collection, read the cookbook article: How to create a
custom Data Collector.

form.type
Purpose: Create a custom form field type

For details on creating your own custom form type, read the cookbook article: How to Create a Custom
Form Field Type.

form.type_extension
Purpose: Create a custom "form extension"

Form type extensions are a way for you took "hook into" the creation of any field in your form. For
example, the addition of the CSRF token is done via a form type extension (FormTypeCsrfExtension1).

A form type extension can modify any part of any field in your form. To create a form type extension, first
create a class that implements the FormTypeExtensionInterface2 interface. For simplicity, you'll often
extend an AbstractTypeExtension3 class instead of the interface directly:

1
2
3
4
5
6
7
8
9

10

// src/Acme/MainBundle/Form/Type/MyFormTypeExtension.php
namespace Acme\MainBundle\Form\Type;

use Symfony\Component\Form\AbstractTypeExtension;

class MyFormTypeExtension extends AbstractTypeExtension
{

// ... fill in whatever methods you want to override
// like buildForm(), buildView(), finishView(), setDefaultOptions()

}

In order for Symfony to know about your form extension and use it, give it the form.type_extension tag:

1
2
3
4
5

services:
main.form.type.my_form_type_extension:

class: Acme\MainBundle\Form\Type\MyFormTypeExtension
tags:

- { name: form.type_extension, alias: field }

1. http://api.symfony.com/master/Symfony/Component/Form/Extension/Csrf/Type/FormTypeCsrfExtension.html

2. http://api.symfony.com/master/Symfony/Component/Form/FormTypeExtensionInterface.html

3. http://api.symfony.com/master/Symfony/Component/Form/AbstractTypeExtension.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 219

http://sensiolabs.com

Listing 77-3

Listing 77-4

The alias key of the tag is the type of field that this extension should be applied to. For example, to
apply the extension to any "field", use the "field" value.

form.type_guesser
Purpose: Add your own logic for "form type guessing"

This tag allows you to add your own logic to the Form Guessing process. By default, form guessing is
done by "guessers" based on the validation metadata and Doctrine metadata (if you're using Doctrine).

To add your own form type guesser, create a class that implements the FormTypeGuesserInterface4

interface. Next, tag its service definition with form.type_guesser (it has no options).

To see an example of how this class might look, see the ValidatorTypeGuesser class in the Form
component.

kernel.cache_warmer
Purpose: Register your service to be called during the cache warming process

Cache warming occurs whenever you run the cache:warmup or cache:clear task (unless you pass --no-
warmup to cache:clear). The purpose is to initialize any cache that will be needed by the application and
prevent the first user from any significant "cache hit" where the cache is generated dynamically.

To register your own cache warmer, first create a service that implements the CacheWarmerInterface5

interface:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/Acme/MainBundle/Cache/MyCustomWarmer.php
namespace Acme\MainBundle\Cache;

use Symfony\Component\HttpKernel\CacheWarmer\CacheWarmerInterface;

class MyCustomWarmer implements CacheWarmerInterface
{

public function warmUp($cacheDir)
{

// do some sort of operations to "warm" your cache
}

public function isOptional()
{

return true;
}

}

The isOptional method should return true if it's possible to use the application without calling this
cache warmer. In Symfony 2.0, optional warmers are always executed anyways, so this function has no
real effect.

To register your warmer with Symfony, give it the kernel.cache_warmer tag:

1
2
3

services:
main.warmer.my_custom_warmer:

class: Acme\MainBundle\Cache\MyCustomWarmer

4. http://api.symfony.com/master/Symfony/Component/Form/FormTypeGuesserInterface.html

5. http://api.symfony.com/master/Symfony/Component/HttpKernel/CacheWarmer/CacheWarmerInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 220

http://sensiolabs.com

4
5

tags:
- { name: kernel.cache_warmer, priority: 0 }

The priority value is optional, and defaults to 0. This value can be from -255 to 255, and the warmers
will be executed in the order of their priority.

kernel.event_listener
Purpose: To listen to different events/hooks in Symfony

This tag allows you to hook your own classes into Symfony's process at different points.

For a full example of this listener, read the How to create an Event Listener cookbook entry.

For another practical example of a kernel listener, see the cookbook article: How to register a new Request
Format and Mime Type.

Core Event Listener Reference

When adding your own listeners, it might be useful to know about the other core Symfony listeners and
their priorities.

All listeners listed here may not be listening depending on your environment, settings and bundles.
Additionally, third-party bundles will bring in additional listener not listed here.

kernel.request

Listener Class Name Priority

ProfilerListener6 1024

TestSessionListener7 192

SessionListener8 128

RouterListener9 32

LocaleListener10 16

Firewall11 8

kernel.controller

Listener Class Name Priority

RequestDataCollector12 0

6. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ProfilerListener.html

7. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/TestSessionListener.html

8. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/SessionListener.html

9. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/RouterListener.html

10. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/LocaleListener.html

11. http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall.html

12. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/DataCollector/RequestDataCollector.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 221

http://sensiolabs.com

Listing 77-5

kernel.response

Listener Class Name Priority

EsiListener13 0

ResponseListener14 0

ResponseListener15 0

ProfilerListener16 -100

TestSessionListener17 -128

WebDebugToolbarListener18 -128

StreamedResponseListener19 -1024

kernel.exception

Listener Class Name Priority

ProfilerListener20 0

ExceptionListener21 -128

kernel.terminate

Listener Class Name Priority

EmailSenderListener22 0

kernel.event_subscriber
Purpose: To subscribe to a set of different events/hooks in Symfony

New in version 2.1: The ability to add kernel event subscribers is new to 2.1.

To enable a custom subscriber, add it as a regular service in one of your configuration, and tag it with
kernel.event_subscriber:

1
2
3

services:
kernel.subscriber.your_subscriber_name:

class: Fully\Qualified\Subscriber\Class\Name

13. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/EsiListener.html

14. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ResponseListener.html

15. http://api.symfony.com/master/Symfony/Bundle/SecurityBundle/EventListener/ResponseListener.html

16. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ProfilerListener.html

17. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/TestSessionListener.html

18. http://api.symfony.com/master/Symfony/Bundle/WebProfilerBundle/EventListener/WebDebugToolbarListener.html

19. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/StreamedResponseListener.html

20. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ProfilerListener.html

21. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html

22. http://api.symfony.com/master/Symfony/Bundle/SwiftmailerBundle/EventListener/EmailSenderListener.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 222

http://sensiolabs.com

Listing 77-6

Listing 77-7

4
5

tags:
- { name: kernel.event_subscriber }

Your service must implement the EventSubscriberInterface23 interface.

If your service is created by a factory, you MUST correctly set the class parameter for this tag to
work correctly.

monolog.logger
Purpose: To use a custom logging channel with Monolog

Monolog allows you to share its handlers between several logging channels. The logger service uses the
channel app but you can change the channel when injecting the logger in a service.

services:
my_service:

class: Fully\Qualified\Loader\Class\Name
arguments: [@logger]
tags:

- { name: monolog.logger, channel: acme }

This works only when the logger service is a constructor argument, not when it is injected through
a setter.

monolog.processor
Purpose: Add a custom processor for logging

Monolog allows you to add processors in the logger or in the handlers to add extra data in the records. A
processor receives the record as an argument and must return it after adding some extra data in the extra
attribute of the record.

Let's see how you can use the built-in IntrospectionProcessor to add the file, the line, the class and
the method where the logger was triggered.

You can add a processor globally:

1
2
3
4
5

services:
my_service:

class: Monolog\Processor\IntrospectionProcessor
tags:

- { name: monolog.processor }

23. http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 223

http://sensiolabs.com

Listing 77-8

Listing 77-9

Listing 77-10

If your service is not a callable (using __invoke) you can add the method attribute in the tag to use
a specific method.

You can add also a processor for a specific handler by using the handler attribute:

1
2
3
4
5

services:
my_service:

class: Monolog\Processor\IntrospectionProcessor
tags:

- { name: monolog.processor, handler: firephp }

You can also add a processor for a specific logging channel by using the channel attribute. This will
register the processor only for the security logging channel used in the Security component:

1
2
3
4
5

services:
my_service:

class: Monolog\Processor\IntrospectionProcessor
tags:

- { name: monolog.processor, channel: security }

You cannot use both the handler and channel attributes for the same tag as handlers are shared
between all channels.

routing.loader
Purpose: Register a custom service that loads routes

To enable a custom routing loader, add it as a regular service in one of your configuration, and tag it with
routing.loader:

1
2
3
4
5

services:
routing.loader.your_loader_name:

class: Fully\Qualified\Loader\Class\Name
tags:

- { name: routing.loader }

security.listener.factory
Purpose: Necessary when creating a custom authentication system

This tag is used when creating your own custom authentication system. For details, see How to create a
custom Authentication Provider.

security.remember_me_aware
Purpose: To allow remember me authentication

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 224

http://sensiolabs.com

Listing 77-11

This tag is used internally to allow remember-me authentication to work. If you have a custom
authentication method where a user can be remember-me authenticated, then you may need to use this
tag.

If your custom authentication factory extends AbstractFactory24 and your custom authentication
listener extends AbstractAuthenticationListener25, then your custom authentication listener will
automatically have this tagged applied and it will function automatically.

security.voter
Purpose: To add a custom voter to Symfony's authorization logic

When you call isGranted on Symfony's security context, a system of "voters" is used behind the scenes
to determine if the user should have access. The security.voter tag allows you to add your own custom
voter to that system.

For more information, read the cookbook article: How to implement your own Voter to blacklist IP
Addresses.

swiftmailer.plugin
Purpose: Register a custom SwiftMailer Plugin

If you're using a custom SwiftMailer plugin (or want to create one), you can register it with SwiftMailer
by creating a service for your plugin and tagging it with swiftmailer.plugin (it has no options).

A SwiftMailer plugin must implement the Swift_Events_EventListener interface. For more
information on plugins, see SwiftMailer's Plugin Documentation26.

Several SwiftMailer plugins are core to Symfony and can be activated via different configuration. For
details, see SwiftmailerBundle Configuration ("swiftmailer").

templating.helper
Purpose: Make your service available in PHP templates

To enable a custom template helper, add it as a regular service in one of your configuration, tag it with
templating.helper and define an alias attribute (the helper will be accessible via this alias in the
templates):

1
2
3
4
5

services:
templating.helper.your_helper_name:

class: Fully\Qualified\Helper\Class\Name
tags:

- { name: templating.helper, alias: alias_name }

translation.loader
Purpose: To register a custom service that loads translations

24. http://api.symfony.com/master/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/AbstractFactory.html

25. http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/AbstractAuthenticationListener.html

26. http://swiftmailer.org/docs/plugins.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 225

http://sensiolabs.com

Listing 77-12

Listing 77-13

Listing 77-14

By default, translations are loaded form the filesystem in a variety of different formats (YAML, XLIFF,
PHP, etc). If you need to load translations from some other source, first create a class that implements
the LoaderInterface27 interface:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Acme/MainBundle/Translation/MyCustomLoader.php
namespace Acme\MainBundle\Translation;

use Symfony\Component\Translation\Loader\LoaderInterface;
use Symfony\Component\Translation\MessageCatalogue;

class MyCustomLoader implements LoaderInterface
{

public function load($resource, $locale, $domain = 'messages')
{

$catalogue = new MessageCatalogue($locale);

// some how load up some translations from the "resource"
// then set them into the catalogue
$catalogue->set('hello.world', 'Hello World!', $domain);

return $catalogue;
}

}

Your custom loader's load method is responsible for returning a MessageCatalogue28.

Now, register your loader as a service and tag it with translation.loader:

1
2
3
4
5

services:
main.translation.my_custom_loader:

class: Acme\MainBundle\Translation\MyCustomLoader
tags:

- { name: translation.loader, alias: bin }

The alias option is required and very important: it defines the file "suffix" that will be used for the
resource files that use this loader. For example, suppose you have some custom bin format that you need
to load. If you have a bin file that contains French translations for the messages domain, then you might
have a file app/Resources/translations/messages.fr.bin.

When Symfony tries to load the bin file, it passes the path to your custom loader as the $resource
argument. You can then perform any logic you need on that file in order to load your translations.

If you're loading translations from a database, you'll still need a resource file, but it might either be blank
or contain a little bit of information about loading those resources from the database. The file is key to
trigger the load method on your custom loader.

twig.extension
Purpose: To register a custom Twig Extension

To enable a Twig extension, add it as a regular service in one of your configuration, and tag it with
twig.extension:

27. http://api.symfony.com/master/Symfony/Component/Translation/Loader/LoaderInterface.html

28. http://api.symfony.com/master/Symfony/Component/Translation/MessageCatalogue.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 226

http://sensiolabs.com

Listing 77-15

Listing 77-16

1
2
3
4
5

services:
twig.extension.your_extension_name:

class: Fully\Qualified\Extension\Class\Name
tags:

- { name: twig.extension }

For information on how to create the actual Twig Extension class, see Twig's documentation29 on the
topic or read the cookbook article: How to write a custom Twig Extension

Before writing your own extensions, have a look at the Twig official extension repository30 which already
includes several useful extensions. For example Intl and its localizeddate filter that formats a date
according to user's locale. These official Twig extensions also have to be added as regular services:

1
2
3
4
5

services:
twig.extension.intl:

class: Twig_Extensions_Extension_Intl
tags:

- { name: twig.extension }

twig.loader
Purpose: Register a custom service that loads Twig templates

By default, Symfony uses only one Twig Loader31 - FilesystemLoader32. If you need to load Twig
templates from another resource, you can create a service for the new loader and tag it with twig.loader:

1
2
3
4
5

services:
acme.demo_bundle.loader.some_twig_loader:

class: Acme\DemoBundle\Loader\SomeTwigLoader
tags:

- { name: twig.loader }

validator.constraint_validator
Purpose: Create your own custom validation constraint

This tag allows you to create and register your own custom validation constraint. For more information,
read the cookbook article: How to create a Custom Validation Constraint.

validator.initializer
Purpose: Register a service that initializes objects before validation

This tag provides a very uncommon piece of functionality that allows you to perform some sort of action
on an object right before it's validated. For example, it's used by Doctrine to query for all of the lazily-
loaded data on an object before it's validated. Without this, some data on a Doctrine entity would appear
to be "missing" when validated, even though this is not really the case.

29. http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension

30. https://github.com/fabpot/Twig-extensions

31. http://twig.sensiolabs.org/doc/api.html#loaders

32. http://api.symfony.com/master/Symfony/Bundle/TwigBundle/Loader/FilesystemLoader.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 227

http://sensiolabs.com

If you do need to use this tag, just make a new class that implements the ObjectInitializerInterface33

interface. Then, tag it with the validator.initializer tag (it has no options).

For an example, see the EntityInitializer class inside the Doctrine Bridge.

33. http://api.symfony.com/master/Symfony/Component/Validator/ObjectInitializerInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 77: The Dependency Injection Tags | 228

http://sensiolabs.com

Listing 78-1

Chapter 78

Requirements for running Symfony2

To run Symfony2, your system needs to adhere to a list of requirements. You can easily see if your system
passes all requirements by running the web/config.php in your Symfony distribution. Since the CLI
often uses a different php.ini configuration file, it's also a good idea to check your requirements from
the command line via:

1 $ php app/check.php

Below is the list of required and optional requirements.

Required
• PHP needs to be a minimum version of PHP 5.3.3
• JSON needs to be enabled
• ctype needs to be enabled
• Your PHP.ini needs to have the date.timezone setting

Optional
• You need to have the PHP-XML module installed
• You need to have at least version 2.6.21 of libxml
• PHP tokenizer needs to be enabled
• mbstring functions need to be enabled
• iconv needs to be enabled
• POSIX needs to be enabled (only on *nix)
• Intl needs to be installed with ICU 4+
• APC 3.0.17+ (or another opcode cache needs to be installed)
• PHP.ini recommended settings

• short_open_tag = Off
• magic_quotes_gpc = Off
• register_globals = Off

PDF brought to you by
generated on February 20, 2013

Chapter 78: Requirements for running Symfony2 | 229

http://sensiolabs.com

• session.autostart = Off

Doctrine
If you want to use Doctrine, you will need to have PDO installed. Additionally, you need to have the
PDO driver installed for the database server you want to use.

PDF brought to you by
generated on February 20, 2013

Chapter 78: Requirements for running Symfony2 | 230

http://sensiolabs.com

	The Reference Book for Symfony master generated on February 20, 2013
	

	Contents at a Glance
	FrameworkBundle Configuration ("framework")
	Configuration
	secret
	ide
	test
	trusted_proxies
	trust_proxy_headers
	form
	csrf_protection
	session
	cookie_lifetime
	cookie_path
	cookie_domain
	cookie_secure
	cookie_httponly
	gc_probability
	gc_divisor
	gc_maxlifetime
	save_path

	templating
	assets_base_urls
	assets_version
	assets_version_format

	Full Default Configuration

	AsseticBundle Configuration Reference
	Full Default Configuration

	Doctrine Configuration Reference
	Configuration Overview
	Caching Drivers
	Mapping Configuration

	Doctrine DBAL Configuration

	Security Configuration Reference
	Full Default Configuration
	Form Login Configuration
	The Login Form and Process
	Redirecting after Login

	Using the PBKDF2 encoder: security and speed
	Using the BCrypt Password Encoder
	HTTP-Digest Authentication

	SwiftmailerBundle Configuration ("swiftmailer")
	Configuration
	transport
	username
	password
	host
	port
	encryption
	auth_mode
	spool
	type
	path

	sender_address
	antiflood
	threshold
	sleep

	delivery_address
	disable_delivery
	logging

	Full Default Configuration

	TwigBundle Configuration Reference
	Configuration
	exception_controller

	Monolog Configuration Reference
	WebProfilerBundle Configuration
	Full Default Configuration

	Form Types Reference
	Supported Field Types
	Text Fields
	Choice Fields
	Date and Time Fields
	Other Fields
	Field Groups
	Hidden Fields
	Base Fields

	birthday Field Type
	Field Options
	years

	Inherited options
	widget
	input
	months
	days
	format
	pattern
	data_timezone
	user_timezone
	invalid_message
	invalid_message_parameters
	read_only
	disabled

	checkbox Field Type
	Example Usage
	Field Options
	value

	Inherited options
	required
	label
	read_only
	disabled
	error_bubbling

	choice Field Type
	Example Usage
	Select tag, Checkboxes or Radio Buttons
	Field Options
	choices
	choice_list
	multiple
	expanded
	preferred_choices
	empty_value
	empty_data
	by_reference

	Inherited options
	required
	label
	read_only
	disabled
	error_bubbling

	collection Field Type
	Basic Usage
	Adding and Removing items

	Field Options
	type
	options
	allow_add
	allow_delete
	prototype
	prototype_name

	Inherited options
	label
	error_bubbling
	by_reference

	country Field Type
	Inherited options
	multiple
	expanded
	preferred_choices
	empty_value
	error_bubbling
	required
	label
	read_only
	disabled

	csrf Field Type
	Field Options
	csrf_provider
	intention
	property_path

	date Field Type
	Basic Usage
	Field Options
	widget
	input
	empty_value
	years
	months
	days
	format
	pattern
	data_timezone
	user_timezone

	Inherited options
	invalid_message
	invalid_message_parameters
	read_only
	disabled

	datetime Field Type
	Field Options
	date_widget
	time_widget
	input
	date_format
	hours
	minutes
	seconds
	years
	months
	days
	with_seconds
	data_timezone
	user_timezone

	Inherited options
	invalid_message
	invalid_message_parameters
	read_only
	disabled

	email Field Type
	Inherited Options
	max_length
	required
	label
	trim
	read_only
	disabled
	error_bubbling

	entity Field Type
	Basic Usage
	Using a Custom Query for the Entities

	Select tag, Checkboxes or Radio Buttons
	Field Options
	class
	property
	group_by
	query_builder
	em

	Inherited options
	multiple
	expanded
	preferred_choices
	empty_value
	required
	label
	read_only
	disabled
	error_bubbling

	file Field Type
	Basic Usage
	Inherited options
	required
	label
	read_only
	disabled
	error_bubbling

	The Abstract "field" Type
	form Field Type
	data
	required
	constraints
	cascade_validation
	read_only
	trim
	mapped
	property_path
	attr
	translation_domain

	hidden Field Type
	Inherited Options
	data
	property_path

	integer Field Type
	Field Options
	rounding_mode
	grouping

	Inherited options
	required
	label
	read_only
	disabled
	error_bubbling
	invalid_message
	invalid_message_parameters

	language Field Type
	Inherited Options
	multiple
	expanded
	preferred_choices
	empty_value
	error_bubbling
	required
	label
	read_only
	disabled

	locale Field Type
	Inherited options
	multiple
	expanded
	preferred_choices
	empty_value
	error_bubbling
	required
	label
	read_only
	disabled

	money Field Type
	Field Options
	currency
	divisor
	precision
	grouping

	Inherited Options
	required
	label
	read_only
	disabled
	error_bubbling
	invalid_message
	invalid_message_parameters

	number Field Type
	Field Options
	precision
	rounding_mode
	grouping

	Inherited Options
	required
	label
	read_only
	disabled
	error_bubbling
	invalid_message
	invalid_message_parameters

	password Field Type
	Field Options
	always_empty

	Inherited Options
	max_length
	required
	label
	trim
	read_only
	disabled
	error_bubbling

	percent Field Type
	Options
	type
	precision

	Inherited Options
	required
	label
	read_only
	disabled
	error_bubbling
	invalid_message
	invalid_message_parameters

	radio Field Type
	Field Options
	value

	Inherited Options
	required
	label
	read_only
	disabled
	error_bubbling

	repeated Field Type
	Example Usage
	Rendering
	Validation

	Field Options
	type
	options
	first_options
	second_options
	first_name
	second_name

	Inherited options
	invalid_message
	invalid_message_parameters
	error_bubbling

	search Field Type
	Inherited Options
	max_length
	required
	label
	trim
	read_only
	disabled
	error_bubbling

	text Field Type
	Inherited Options
	max_length
	required
	label
	trim
	read_only
	disabled
	error_bubbling

	textarea Field Type
	Inherited Options
	max_length
	required
	label
	trim
	read_only
	disabled
	error_bubbling

	time Field Type
	Basic Usage
	Field Options
	widget
	input
	with_seconds
	hours
	minutes
	seconds
	data_timezone
	user_timezone

	Inherited options
	invalid_message
	invalid_message_parameters
	read_only
	disabled

	timezone Field Type
	Inherited options
	multiple
	expanded
	preferred_choices
	empty_value
	required
	label
	read_only
	disabled
	error_bubbling

	url Field Type
	Field Options
	default_protocol

	Inherited Options
	max_length
	required
	label
	trim
	read_only
	disabled
	error_bubbling

	Twig Template Form Function Reference
	form_label(view, label, variables)
	form_errors(view)
	form_widget(view, variables)
	form_row(view, variables)
	form_rest(view, variables)
	form_enctype(view)
	More about Form "Variables"

	Symfony2 Twig Extensions
	Functions
	Filters
	Tags
	Tests
	Global Variables
	Symfony Standard Edition Extensions

	Validation Constraints Reference
	Supported Constraints
	Basic Constraints
	String Constraints
	Number Constraints
	Date Constraints
	Collection Constraints
	File Constraints
	Financial Constraints
	Other Constraints

	NotBlank
	Basic Usage
	Options
	message

	Blank
	Basic Usage
	Options
	message

	NotNull
	Basic Usage
	Options
	message

	Null
	Basic Usage
	Options
	message

	True
	Basic Usage
	Options
	message

	False
	Basic Usage
	Options
	message

	Type
	Basic Usage
	Options
	type
	message

	Email
	Basic Usage
	Options
	message
	checkMX
	checkHost

	MinLength
	Basic Usage
	Options
	limit
	message
	charset

	MaxLength
	Basic Usage
	Options
	limit
	message
	charset

	Length
	Basic Usage
	Options
	min
	max
	charset
	minMessage
	maxMessage
	exactMessage

	Url
	Basic Usage
	Options
	message
	protocols

	Regex
	Basic Usage
	Options
	pattern
	match
	message

	Ip
	Basic Usage
	Options
	version
	message

	Max
	Basic Usage
	Options
	limit
	message
	invalidMessage

	Min
	Basic Usage
	Options
	limit
	message
	invalidMessage

	Range
	Basic Usage
	Options
	min
	max
	minMessage
	maxMessage
	invalidMessage

	Date
	Basic Usage
	Options
	message

	DateTime
	Basic Usage
	Options
	message

	Time
	Basic Usage
	Options
	message

	Choice
	Basic Usage
	Supplying the Choices with a Callback Function
	Available Options
	choices
	callback
	multiple
	min
	max
	message
	multipleMessage
	minMessage
	maxMessage
	strict

	Collection
	Basic Usage
	Presence and Absence of Fields

	Options
	fields
	allowExtraFields
	extraFieldsMessage
	allowMissingFields
	missingFieldsMessage

	Count
	Basic Usage
	Options
	min
	max
	minMessage
	maxMessage
	exactMessage

	UniqueEntity
	Basic Usage
	Options
	fields
	message
	em
	repositoryMethod

	Language
	Basic Usage
	Options
	message

	Locale
	Basic Usage
	Options
	message

	Country
	Basic Usage
	Options
	message

	File
	Basic Usage
	Options
	maxSize
	mimeTypes
	maxSizeMessage
	mimeTypesMessage
	notFoundMessage
	notReadableMessage
	uploadIniSizeErrorMessage
	uploadFormSizeErrorMessage
	uploadErrorMessage

	Image
	Basic Usage
	Options
	mimeTypes
	mimeTypesMessage
	minWidth
	maxWidth
	minHeight
	maxHeight
	sizeNotDetectedMessage
	maxWidthMessage
	minWidthMessage
	maxHeightMessage
	minHeightMessage

	CardScheme
	Basic Usage
	Available Options
	schemes
	message

	Luhn
	Basic Usage
	Available Options
	message

	Callback
	Setup
	The Callback Method
	Options
	methods

	All
	Basic Usage
	Options
	constraints

	UserPassword
	Basic Usage
	Options
	message

	Valid
	Basic Usage
	Options
	traverse

	The Dependency Injection Tags
	data_collector
	form.type
	form.type_extension
	form.type_guesser
	kernel.cache_warmer
	kernel.event_listener
	Core Event Listener Reference
	kernel.request
	kernel.controller
	kernel.response
	kernel.exception
	kernel.terminate

	kernel.event_subscriber
	monolog.logger
	monolog.processor
	routing.loader
	security.listener.factory
	security.remember_me_aware
	security.voter
	swiftmailer.plugin
	templating.helper
	translation.loader
	twig.extension
	twig.loader
	validator.constraint_validator
	validator.initializer

	Requirements for running Symfony2
	Required
	Optional
	Doctrine

